
A

T

M

O

S

M

A

N

U

A

L

Ian Adamson

~l"l:,.s «Jn ~ts- L

-Aw~ . Av~

The ORIC ATMOS
Manual

Pan Books London and Sydney

Published 1964 by Pan Books Ltd,
Cavaye Place, London SW10 9PG
in association with Personal Computer News
9676543
This revised edition produced
for Orie Products International Ltd 1964
©Ian Adamson 1964
ISBN 0 330 26462 7
Photoset by Parker Typesening Service. Leicester
Printed and bound in Great Britain by
Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

This book is sold subject to the condition that it shall not,
by way of trade or otherwise, be lent, re-sold,
hired out or otherwise circulated without the publisher's prior consent
in any form of binding or cover other than that
in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser

Contents

Introduction 1
Getting the ATMOS together 3

2 The Language Lesson 7
3 Building With BASIC 23
4 Loops Beyond Compare 36
5 Down memory lane 50
6 Tapes and Data 61
7 Graphics and Colour 69
8 The Sound of Music 93
9 Orie BASIC Keywords 108

1 O Introducing Machine Code 190
11 Input/Output 223

Appendices
ASCII Character Codes 228

2 Escape Codes 232
3 Error Messages 234
4 Screen Grids 237
5 Memory Map 240
6 Binary/Hex/Decimal Conversion 244
7 Orie MCP-40 Printer Use 252
8 6502 Op Codes 261
9 ROM Routines and Addresses 266

10 Input/Output Circuitry 273
11 ATMOS 1/0 Connections 284
12 BASIC Reserved Words and Tokens 289

Acknowledgements

The book you are holding could not have been produced without the teamwork of
many people. As the notional author of this text, it falls to me to express my
gratitude and my debt to them all: Andrzej Chanerley and Roger Smith for
technical inputs, Ian Ritchie for musical expertise, Brian Jones for programming,
printing, graphics, ethyl alcohol and corn esters supplies, Fi lnchbald for edits,
optimism and balm, and Richard Kennedy for hard work, sacrifice and support in
the circumstances surrounding the production of this book.

All characters and situations depicted in this book, as with all books, are
fictitious, and should not be confused with any events, but this should not bother
anyone who understands that 'Emptiness is not different from Form and Form is
not different from Emptiness'. This book is dedicated to the memory of Pigalle
and all that remains truly sacred.

Thank you.

Introduction

Welcome to the world of the Orie ATMOS microcomputer! If you're
reading this you have become the proud owner of an ATMOS, and this
handbook intends to show you how to use it to its full potential. High
resolution graphics, three channel sound, colour and many other features
make the Orie ATMOS one of the most advanced microcomputers available
today.

This handbook covers all you need to know to get the most from your
ATMOS, learn the built-in BASIC language, get started on programming in
BASIC, and discover the fascination of computing. If you're starting from
scratch, please remember when the going gets a little tough that it's a
complicated and powerful machine you are learning to use, and you can't
expect to have it all worked out in a few hours.

Exercise some patience and application, work through the examples we
give in the text, and you'll soon be hacking a keyboard with the best of
them! We introduce the jargon as we come to it, but you should also realise
that computing is a technical subject, and familiarity with the technical
terms is a necessary part of your initiation into computing. Whilst bits and
bytes and BASIC, chips and Ks and all the rest, are confusing when first
encountered, they are all essential elements in discussing our subject.

This handbook first covers setting up your Orie ATMOS, and describes
the facilities built into it, and some of the expansion possibilities. The first
elements of the BASIC language are defined, and the elements of pro
gramming are explained as you are introduced to more of the BASIC intruc
tions. After covering the storage and retrieval of programs on cassette tape,
the complex and powerful graphics and sound facilities of the Orie are
covered in separate sections. The full set of the Orie BASIC instructions and
commands is then covered in an alphabetic glossary, with their formats and
examples of their use, for easy reference. Chapters on machine code
programming and input/output interfacing follow, and the appendices
provide additional technical and reference material not suitable for the main
text.

We're sure you'll find that the world your ATMOS opens up will provide
you with an inexhaustible source of fun, fascination and satisfaction. Let's
take our first steps towards opening up this world!

-
mr

r·
·~

.,,

D

..
..

..
 I

<

I
-

-
D

 D
 D

 D
 :

:1:
::::

z g

D

D

 .
. ' ..

...

D

I
1

•
•
 1...

..
m

D

D

.. 1

.....

x
D

D

D

 .
. 1..

...
""l

11
D

D

:::

:::
:

~z
 -

~
D

D

 •
•••

•••

-f
!!

?O
z"

"Z

D

D

...
...

.
-i

::
a_

.
D

 "
"'

::
 }

Jm
z:

:o

D

...
..

~ ..
... o

D

D

>

m
z

D

D

n::
on

D

D

m

"
'

o
D

D
D

D

D

D

D
D

D

']

D
O

D
D

:

D

D
D

.1

o
o

g
o

0
.

lilll
o

o
0

D
D

;f

j
D

_

O

·•·
-
·
-
-
-

1

1 Getting the
ATMOS together

Let's first run through what comes in the Orie box of goodies. You get the
Orie ATMOS itself, the power supply, a cassette lead, and a TV lead. Find a
convenient work surface big enough for the ATMOS, your TV, and a
cassette recorder if you've got one, and you can proceed to set your system
up. The components of your microcomputer system should be connected
up as shown in the diagram.

The Orie power supply should be plugged into a convenient socket, close
enough so that there's plenty of slack in the cable, the plug of which is fitted
into the power socket of the ATMOS (at the left rear of the Orie as you face
the keyboard). This supplies the 9V d.c. (direct current) power which the
Orie needs. There's no on/off switch on the Orie, so it's now powered up,
and two elements of our system are working. (The keyboard, which is an
input device in the jargon, since we use it to input information and
commands, and the processor board, which as you might imagine does all
the processing of information and handles the input and output of data, are
of course all built into one unit in the Orie ATMOS.)

We need an output device to know what's happening though, and this is
where your TV comes in. This functions as an.on-line visual display unit
(VDU) output device, but we'll just call it the TV! Connect the TV lead
between the Orie (using the rightmost socket) and the aerial socket of the
TV. If there's a choice, use the UHF socket. Switch on the TV, and tune it
to Channel 36. When you get the correct position, the screen will be
displaying the message:

ORIC EXTENDED BASIC Vl .1
© 1983 TANGERINE

xxxxx BYTES FREE

READY

•
This notice comes up on switching on the Orie. If you now take out the
power supply from the Orie and re-insert it, the screen goes blank,
with random white blocks on it for a few seconds (while the Orie
checks through its circuits), and then clears to display the message again.

- -~

4 Getting the ATMOS together

Adjust the brightness and contrast controls to get a sharp picture.
The Orie itself has two controls that can be used to fine-tune the
picture. They affect the colour signal, but also have some effect on the
stability and steadiness of the picture, and we will deal with them here
for completeness. When you start to experiment with the colour cap
abilities of your ATMOS you may find that colour contrast is lacking,
especially between yellow and white, or that you have 'dot crawl' pro
ducing a shimmering effect, making the colour display hard on the
eyes and reducing the quality of the screen resolution. If you are
positive that none of this is due to a badly adjusted TV, then you
should have a look underneath the Orie. You will find two small holes,
fairly close together; of which one is lozenge-shaped and contains a
slotted silver screw, and the other round, with a brass screw. Find a
screwdriver, and leave the Orie switched on, with a multi-coloured
display on the screen. Turn the Orie over and turn the screw within
the lozenge-shaped hole a quarter turn or so in both directions, watch
ing the screen as you go, until you have found the setting at which the
yellow just starts to fade. Back off slightly from this position and the
bias modulator is then correctly set. This should also centre the picture
on the screen. Next adjust the brass screw within the round hole,
adjusting it in the same way until you get a positive colour contrast,
with no shimmering or rainbow effect is achieved. Remove the screw
driver from the screwhead in case it affects the signal. The controls are
set for a standard test TV at the factory, and adjustment is necessary if
your TV differs significantly.

Under the copyright notice the Orie displays the number of bytes of
free memory. The Orie ATMOS comes with different memory sizes of
48K and 16K. AK is an abbreviation of 'kilobyte', meaning 1024 bytes
(you'll find out why 1024 and not 1000 later), and a byte is a storage
location in the computer memory. Out of the total memories of 49152
(48K) and 16384 (16K) bytes initially available, however, the Orie
takes some on switching on for use by the system, to store information
about the TV screen display, and the current state of affairs, so the
number of bytes of free memory is less.

The READY on the screen indicates your ATMOS is waiting for instruc
tions. The flashing square is the cursor. This is an indicator that shows
the current position at which characters will be printed on the screen.

There are other sockets on the rear of your Orie (see Appendix 11).
The R.G.B. (red, green, blue) outlet is for the connection of a colour
monitor, rather than a TV. Monitors are high~quality VDUs, which
provide a firmer and sharper picture quality than a TV, but are hence
rather more expensive, and are generally dedicated to a computer sys
tem, but combined monitor/TV systems are available.

Getting the ATMOS together 5

The next socket is for input and output to a tape recorder, and needs
rather less expenditure to be put to use, especially since the cheaper cassette
recorders work at least as well as more expensive ones. There are cassette
recorders designed for use with computer systems, but most models will ...
work well. The Orie can use the cassette recorder as an off-line storage
device, which means that programs can be stored as an encoded sound
signal on tape, and then played back in again. With your OricATMOS you
will have received the demonstration programs supplied with the machine,
and should refer to Chapter 6 on cassette handling if you can't wait to get
this or other commercial software loaded into your Orie.

To use a cassette, the 3-pin DIN plugs on the cassette leads must be
inserted into the Orie socket and that of the tape recorder. Most tape
recorders will have a DIN socket, but if yours doesn't, alternative cassette
leads are available which provide a 3-pin DIN plug for the Orie end, and two
3mm jack plugs at the other for the tape recorder EAR and MIC sockets. The
Orie uses the cassette sound port to SAVE and LOAD programs, but the
outputs from the sound and music facilities of the Orie are also sent as
signals to this port, so that you can use the cassette lead to connect up to
your hi-fi system if you wish to amplify or record the music you produce on
your Orie. See Appendix 11 for the connections.

Next to the cassette port is the printer port, with its 20-pin socket. The
Orie can be used with any printer with a Centronics parallel interface,
providing a suitable cable is available. The Orie MCP-40 printer (which was
used for all the printouts in this handbook) gives not only printed versions
of programs, or hard-copy of program output, but can also produce
four-colour graphics of high quality. This will be available from wherever
you bought your Orie, and because of its versatility should be considered if
you are going to invest in a printer. The capacity to produce hard copy
output, and especially printed program listings, is extremely useful. Word
processing and similar tasks need a full-size printer, but the MCP-40 is quite
adequate for the hobbyist. Appendix 7 deals with the use of this printer, and
Chapter 11 with use of the printer port for input/output.

The adjacent larger socket is the expansion port, for connecting addi
tional pieces of equipment which can use this 1/0 (input/output) port in
various ways. Such items as a joystick interface, a modem (telephone
communications system) and the Orie MICRODISC Drive can be connec
ted. Appendix 10 and Chapter 11 give details of the use of this port for the
electronics enthusiast.

The alternative storage medium that is available for the Orie is the Orie
MICRODISC Drive. Disc drives provide a fast, sophisticated way of
storing and retrieving data from a floppy disc, but do require a considerable
investment. Most of the facilities provided by a disc drive exist or can be
simulated using a cassette recorder, but the disc system wins hands down on
speed, flexibility and convenience.

-..

6 Getting the ATMOS together

If you find yourself spending a lot of time with your Orie and getting
caught by the programming bug, you will find yourself contemplating the
purchase of a drive and/or a printer (the sequence depends on what you
want to do with the system), and you'll come to appreciate what amazing
value the Orie is, comparing it's capacity to interface with these peripherals
and its own built-in capabilities with the cost of 'add-ons'. Unfortunately
that's the way the electro~mechanical cookie crumbles. For the moment,
however, let's get on with exploring what we can do with the Oric's own
facilities.

2 The Language
Lesson

You have now got your Orie up and running, but apart from the message on
the screen it's not doing much, is it? Well, computers are dumb beasts, as
well as being very literal-minded, and your Orie is waiting to be given
something to do. We need to talk in some language understood by both the
Orie and ourselves, so that we can use the keyboard to input some
instructions. In this chapter we're going to introduce you to the use of your
Orie, and show you how to get it to do what you want. This means
explaining a lot of new concepts and actions, so it's a little daunting if you
are new to computing. Don't skip any of it, though, as it's all a necessary
introduction to bigger and better things! Try all the things suggested in the
text, as you'll only learn from experience. Experiment as much as you like,
since you can't hurt the Orie with anything you enter at the keyboard.

The operations of the microchips in your Orie take place in a low-level
language known as machine code. We have a section on machine code later
in this handbook for those who wish to experiment with this language, but
it is a difficult topic, and the Orie comes ready fitted with the BASIC lan
guage, which is much easier to get to grips with (the name is an acronym
standing for Beginners All-Purpose Symbolic Instruction Code).

BASIC is a high-level language, meaning we don't have to concern
ourselves with the mechanics of the complex operations inside the com
puter, but we can use:commands and instructions to describe the operations
we wish to occur. The Orie then interprets these instructions and does the
job asked of it without much fuss, and very quickly, as long as we put in the
instructions in the correct format.

Let's take a look at some commands first. Commands are keyed in
through the keyboard, and will appear on the screen as you type the letters
and symbols. The keyboard has all the standard letters and numbers, plus
some special keys and BASIC symbols. The large unmarked key is the SPACE

bar, flanked by the cursor control keys (with the arrows). The SHIFT keys
allow you to access the upper symbol printed above the key, where this
occurs. DEL stands for delete, as you might suspect. Try pressing any of the
letter/symbol keys at random, with and without SHIFT. Whatever you input
from the keyboard cannot hurt the Orie, although it is possible to find
yourself facing a machine that has 'hung up' and won't respond to keys
being pressed.

8 The Language Lesson

Should this occur, you have two options. The first is a bit drastic,
although it won't do any harm, and simply involves pulling the plug (the
d.c. supply into the back of the Orie), waiting a few seconds, and putting it
back in. You'll see the power-up message return to the screen when it
clears. However, there's a useful device on the underside of the Orie, inside
the small square hole on the bottom of the casing. It's well protected
because you don't want to press it accidentally, but the button inside is the
RESET switch. This has the distinct advantage, as you'll come to appreciate
later, that it resets the machine without wiping out the program that you've
spent hours keying in, and can save you hours of work.

Note that the keys auto-repeat-if you hold a key down after a short delay
the character will be printed repeatedly for as long as you continue to press
the key. If you input a random set of characters and then press the RETURN

key (which activates these commands or letters which you've been input
ting), you will get an error message. This says:

?SYNTAX ERROR

A syntax error message means the Orie doesn't understand what has been
entered, because it doesn't make sense according to the rules by which
commands and instructions are interpreted.

If you enter (say by holding down one key) more than 75 characters a bell
sound is given when you key in the 76th (the last character on the second
line). The bell sounds again for the 77th, 78th and 79th characters. If you
enter an 80th character, it is not printed on the screen, but a'/' is printed
instead, and the cursor moves to the start of the next line. The Orie will only
accept lines of less than 80 characters, and if this is exceeded it prints'/' and
'forgets' the line. The bell sound is the warning of this possibility.

Let's run through some direct commands. Press RETURN. If you've got
characters in there, you'll get ?SYNTAX ERROR, then READY on the next line.
Key in:

PRINT "MESSAGE"

then press RETURN. Make sure you use the double quotes, not the apostro
phe (which is the unshifted character on the same key). The Orie will PRINT

the characters between the quotation marks on the next clear line of the
screen display, so that MESSAGE appears on the screen, and then gives you
the READY prompt, telling you that it's waiting to be asked to do something
else. Type in:

PRINT "4+5" (then press RETURN)

The Orie puts 4+5 on screen. Now key in

PRINT 4+ 5 (plus RETURN)

This time the Orie gives us 9on the screen. We'll assume you've caught on

The Language Lesson 9

to the use of RETURN to activate commands by now, so we won't mention it
again. Because we missed out the quotes, our command was interpreted by
the Orie as an instruction to PRINT the result of adding 4 and S. Anything
between quotes is known as a string literal, or just a string.

In a PRINT statement, exactly what's between the quotes is PRINTed out.
Anything that's not between quotes is interpreted as a set of instructions.
We can combine the two, and enter:

PRINT "4*3="; 4*3

The asterisk(*) is used instead of the multiplication sign, to avoid confusion
with the small x. The expression 4*4is evaluated by the Orie, since it is not
enclosed in quotes, whilst the string between quotes is printed just as it
appears (less the quotes). This gives us a printout of:

4*3=12

You should note that your Orie gives you a space between the = sign and 1.
The Orie gives positive numbers both a leading space (where the minus sign
goes for negative numbers), and a following space automatically when the
number is PRINTed on the screen. This ensures the separation of numbers
which follow each other, and is very helpful when we need to format output
to the screen.

We can deduce from the above that BASIC includes some standard English
words, and arithmetic symbols (called operators), such as'+'. The full set
of these arithmetic operators is:

+

*
I

i

Addition
Subtraction
Multiplication
Division
Exponentiation (raising to a power)

The use of'*' for the multiplication sign and'/' for division is standard in
computing. Since your best way of understanding how the Orie deals with
arithmetic is to key in numeric calculations using these operators, here's an
Orie function that will save you some time. The question mark, '?', can be
used as an abbreviation for PRINT. We won't use it in the text, since it can be
confusing, but wherever we have, e.g., PRINT "HI'", you can enter ?"HI", and
the result will be the same. Try this with the example below.

Right, let's try some arithmetic. PRINT 6/2 (or? 612) will give you 3, PRINT
2 t 2 will give you 4, and can be read as 'two raised to the power two', or 22

(two squared). If you try to PRINT complex expressions such as 2/3+4 or
4*3+ 5/3 you may find that the results are not always what you think they're
going to be. This is because there are a set of rules governing the way an

1 o The Language Lesson

expression is worked out by the Orie. To give an unambiguous meaning to
a complex expression the Orie assigns a different priority to each type of
operator. Highest priority is anything enclosed in brackets, then
exponentiation, followed by* and I (equal priority), and lastly + and -
(equal). So if we try PRINT2+3*4(do!), then 3*4is evaluated first, since*
has higher priority than +. Having worked out that 3*4 is 12, the Orie
then adds 2, and prints up 14. We'll get the same answer if we use 4*3+2,
but if what we want the answer to is really 'the sum of 3 and 2, multiplied
by 4' we have to use brackets. Ifwe ask for the result of (3+2)*4, 3+2 will
be worked out first, and the result multiplied by 4. The Orie, when
working out an expression, first performs the operations with the highest
priority, then those with the next highest, and so on. Operations with the
same priority are worked out left to right, so that 4-2+4+5 will give you
11, while 4-(2+4+5) gives -7, as the expression in the brackets is
worked out first, and the result (11, which presumably you can work out
without the Orie to help!) is then subtracted from 4. If we enter 4*6/7 it
will evaluate as (4*6), calculated first to give 24, divided by 7, with the
result of 3.42857143.

The Orie gives numbers to an accuracy of 9 significant figures. It also
has a trailing space after the number and a leading space. This ensures that
numbers are printed separately on the screen. Try keying in PRINT"!"; "2".
This PRINTS the two strings "l" and "2" with the second directly fol
lowing the other (which is the function of the semi-colon in a PRINT
instruction). Now try PRINT 1;2. Again the semi-colon means that the
second item is to be printed directly after the first, but what you actually
get on screen is:

(space)l(space) (space)2(space)

Let's just deal with a couple of other ideas, and we'll be ready to have a
look at a BASIC program. If we enter PRINT "ABC" the Orie will give us ABC
on screen, because we had quotes round it, meaning 'print the stuff
between the quotes'. If we key in PRINT ABC, however, we will get 0.
What's this? Well, because it was asked to PRINT something not between
quotes, the Orie attempted to evaluate it as a number. A named variable
can be used to store numbers, so the Orie tried to find a variable called
ABC, failed, and gave us a zero.

You can think of a variable as a storage box with a name. The contents
of the box can be altered. (hence variable). The command for giving
(assigning) a variable a value is LET. Key in LET ABC=93 followed by
RETURN, then try PRINT ABC again. This time the Orie looks for the use of
ABC as a variable name, and finds in the storage location named ABC the
value 93, so it prints it. We can also proceed to reassign the value given to
our variable ABC.

The Language Lesson 11

Try entering the commands below, printing out the value of ABC after
each operation, using PRINT ABC or ?ABC. We've used a space between PRINT
(or?) and ABC, but this is not necessary. The Orie will accept PRINTABC or
?ABC just as happily. The same is true of most instructions, so that
LETABC=l00 will work. However, running things together in this way can
make it difficult to read a printed listing of the instructions. Now try:

LET ABC=l00
LET ABC=l3+10
LET ABC=ABC+l0
LET ABC=ABC*2
LET ABC=ABC/2.3

As you can see, we can not only give a new value to ABC, but can also use the
old value of ABC in the calculation of the new value. You can think of the
instruction LET ABC=ABC*2 being interpreted as 'take the value stored in the
location called ABC, multiply it by two, then put the result back into ABC'.
This will also explain why if we try the command LET 100=ABC we will get the
?SYNTAX ERROR message again, because the Orie interprets the first charac
ters after the LET as a variable name. Valid variable names must start with a
capital letter, although they may be followed by any combination of capital
letters and digits. The other important point about variable names is that,
although they may be of any length (so that we can use meaningful variable
names like HOUSEPRICE or PERCENT) only the first two letters are significant.
Try PRINTing a variable ABACUS and you will find it the same as ABC, because
to the Orie they are both stored under the name AB. Variable names also
cannot contain any reserved words.

A reserved word is a set of letters that the Orie recognizes as a legal BASIC
word. You have seen PRINT and LET, and will be introduced to others as we
work through Orie BASIC. The full set of reserved words is given in Chapter
9, Orie BASIC Keywords, and these are the only words the Orie understands.
It checks anything we key in, character by character, against a table of BASIC
words, and transfers any such word into a different form for internal
storage, whenever we press RETURN. Just to confuse the issue, LET is
optional, and can be omitted, and the Orie will still know what you mean.
This is because, as we stated before, anything outside quotes is assumed to
be either a variable or a bit of Orie BASIC. ABC= 100 is the same as LET ABC= 100.
Try the examples above without the use of LET.

We now need to deal with editing before we move on to programming.
Up to now we've assumed that you either haven't made mistakes in keying
anything in, noticed in time and were sharp enough to use the DELete key
and then re-enter the bit you got wrong, or else pressed RETURN, got the
?SYNTAX ERROR message, and tried again.

All the above options would have helped you to understand the impor
tance of keying things in correctly. You can't afford to be sloppy with a

12 The Language Lesson

computer. However, the Orie has editing facilities which minimise the
effort required to correct mistakes or change a small portion of a line. Well,
we now come to the mysterious arrow (cursor control) keys and the CTRL
key. You will have noticed that the Orie PRINTS on screen lines top to
bottom, and that when it needs a new line and the screen is full it scrolls,
shifting all lines upwards and losing the current top line in the process. To
get rid of the current contents of the screen, enter CLS (RETURN). This
command CLears the screen, placing the cursor in the top left of the screen.
The same effect can be produced by using the CTRL key. This key is used in
combination with certain other keys to produce some useful effects.

If you hold down the CTRL key and then press the 'L' key the screen will be
cleared, just as if you had used CLS and then RETURN. The control key
method saves some keystrokes! The other common control functions in
addition to CTRL-L are:

CTRL-A
CTRL-F
CTRL-Q
CTRL-X
CTRL-T

Copy character at current cursor position
Keyclick on/off
Cursor on/off
Current line abort
Upper (CAPS) and lower case toggle

CTRL-A and CTRL-X we will deal with below. CTRL-F turns off the sound the
keyboard makes when a key is pressed, and CTRL-Q makes the cursor
disappear, when first used(since keyclick and cursor are on when the Orie
is first switched on), and then turn keyclick and cursor back on. Such a
switch is called a toggle. Up to now we've been using upper case letters
only, and you should have noticed the CAPS sign in the top right of the Orie
screen, on what is known as the status line. CTRL-T is the toggle to switch
between upper and lower case letters . Try CTRL-T and you'll find that the
CAPS sign disappears, and you get lower case letters. The SHIFT keys will
give you capitals, whereas in CAPS mode they have no effect. The reason why
CAPS is normally set ON is that BASIC COMMANDS AND INSTRUC
TIONS HA VETO BE IN CAPITALS.

OK, we now can go on to examine a BASIC program. Let's give you a
program, and then examine what it does. We'll deal with editing directly
after giving the program listing below, since you are likely to make some
errors. Like all the listings in this handbook, this one is reproduced directly
from the Orie on the Orie printer. Whenever you key anything in, be sure to
pay attention to punctuation, since a semi-colon and a colon, or an
apostrophe and a quote sign, are easy to confuse, and produce radically
different effects. Our first program is a calculation of VAT, which is a tax of
15% added on to the sale price of goods. In this case an item is to be sold at
£21, and we need to write a program that tells the Orie the sale price (which
is the input data in computerspeak), then get the Orie to calculate 15% of
the selling price (which is 15/100 or 0.15), and then add this amount to the

The Language Lesson 13

selling price. This total gives us the final price to be paid. This is the
processing portion of our program, and now we need to define our output,
which in this case means to PRINT the total on the screen. Breaking the task
down into small steps to be performed in sequence gives us a set of
operations that can be easily translated into BASIC. We then write a program
like this.

l0 REM *UAT Calculation*
20 LET SELL=21
30 LET UAT=0.15*SELL
40 LET TOTAL=SELL+UAT
50 PRINT "TOTAL=";TOTAL

If you look at this, you can see that the program consists of a set of program
lines, numbered from 10 to 50 in steps of ten, and in sequence. Use CTRL-L
to clear the screen, or enter CLS followed by RETURN, and then key in the
program in exactly as listed, pressing RETURN at the end of each line. Unlike
its use with direct commands, such as we were using previously, here
RETURN at the end of a program line tells the Orie to store the line in
memory, the cursor returns to the left of the screen to indicate that it's ready
for another program line or command.

If you make an error as you type in a line, you can use CTRL-X to abort the
line. This PRINTS a backslash character and returns the cursor to the left of
the screen, having instructed the Orie to forget the line. Enter the line
again, and repeat the process until you get it right. Remember you could
use the DEL key to DELete characters, and then type in the correct ones, but
we're introducing you to CTRL-X, so use it!

Line 10 has some lower case letters in it. After you've typed 10 REM *VAT c
you will need to use CTRL-T to switch to lower case, and CAPS will disappear
from the top status line of the screen. Enter the lower case letters, and then
use CTRL-T again to switch back to CAPS mode.

The REM statement means that whatever follows in that line is just a
REMark or REMinder to anybody looking at the program listing, and is to be
ignored by the Orie. (It still stores it in memory, though.) The asterisks are
just characters put in to make the REMark stand out, and aren't multipli
cation signs in this case.

When you've keyed in all the lines, if you didn't get it right every time,
you will have a screen that has the correct program lines split by the ones
you've aborted, looking something like this (although we hope you did
rather better!):

14 The Language Lesson

10 REM *UAT Calculation*
20 LET SELL-'-
20 LET SELL=20
30 LET UAT=0.158'-
30 LET UAT=0. 15*SELL
40 LET TOTAL=SELL+UAT
50 PRINT TOTAL='T'-
50 PRINT "TOTAL='.' ;TOTAL

To get a listing of the program lines accepted by the Orie, type in LIST as a
command, and the program will appear on screen as it has been stored in
memory, and this should be the same as the first listing above. Now key in
line 20 again, with a deliberate mistake.

20LET SEL=20

You now have two line 20s on screen. Use CTRL-L and then enter LIST again.
The new line 20 has replaced the old. Notice that the Orie has automatically
inserted a space between the 20 and LET, although we didn't have one. If
we'd typed:

20 LET SEL=20

we would still only have got one space when we LISTed the program. Well,
now we've got an incorrect line, and want to correct it without retyping
the whole line. There is a command EDIT, which needs to be followed by
the line number we want to correct. Enter EDIT 20, and when you press
RETURN you'll get a blank line beneath the 'Ready' prompt displayed after
the program listing, then line 20, with the cursor at the beginning of line
20. Hold down the CTRL key, and press A. The cursor moves right, and as
it gets to each character the character is merged with the cursor. CTRL-A
copies the character at the current cursor position into a temporary mem
ory store (called an input buffer). Move the cursor along until it's on the
equals sign. We have now 'copied' 20 LET SEL into the buffer, but not the
equals sign. We need to insert an L, and we do this by moving the cursor
to an empty portion of the screen. Press the up-arrow key to get the cursor
above the line. Press L and it appears on screen. This is now in the buffer,
following the first L. We need to follow this with =, so we use the
left-arrow key and move the cursor back to cover the L we've just keyed
in. Use the down-arrow key to get the cursor over the =, and then use
CTRL-A again to copy everything to the end of the line. Press RETURN.
You'll then have:

Re o.d y

EDIT20

L
20 LET SEL=20

The Language Lesson 15

with the cursor below it. Use LIST again, and you'll see that the contents of
the buffer (including the inserted L) have become the new line 20. You can
copy anything that is on the screen, using the arrow keys to position the
cursor, and then CTRL-A to copy, without using EDIT, but EDIT gives you a
blank line above and below to type additional characters. If you are
inserting something, you must get back to where you were before you
started the insert. Try moving the cursor to the L of the LIST command
you've just typed in, copy LJST with CTRL-A, then hit RETURN. The program
will be LISTed again. This copy facility is very useful, as it can be used to
repeat similar portions of lines. Move the cursor up level with line 40, then
copy the 4. If you now press 3, the 0 of 40 at the cursor position will change
to 3. Copy LET, then use the left-arrow key to move along to the s of SELL.
Copy SELL, and when you've got the cursor over the+ sign, press=. Again,
the + will change to =. Copy VAT, then press RETURN. Now use LIST, and
you'll see that there's a new line in the listing, so our program looks like
this:

10 REM *UAT Co.lculo.tion*
20 LET SELL=20
30 LET UAT=0. 15*SELL
40 LET TOTAL=SELL+UAT
43 LET SELL=UAT
50 PRINT "TOTAL=";TOTAL

You can see how easy it is to make alterations and correct lines, and you'll
now see why we started our program with the line numbers going up in
tens. The line number may be any integer (whole number) up to 63999, so
we could have numbered our program as l, 2, 3 ... or 9000, 9050, 9051
... or any sequence. If we don't leave gaps in the sequence, however, we
won't be able to insert additional lines, which are often required, so we used
steps of ten. You can also see that the Orie automatically inserts a line in the
correct sequence, so it doesn't matter in what order we enter lines. We don't
want line 43, and any line is easily deleted by just entering the line number
and pressing RETURN. Do this, then LIST the program again, and you'll see
that line 43 has been wiped out of the listing.

That's editing dealt with, so we'd better get back to our program. If we
look it over, we can see that it should do its job. The variable SELL is set to

16 The Language Lesson

the value of £21, the VAT amount is correctly calculated as 0.15 of SELL, line
40 adds SELL and the calculated VAT, and line 50 should PRINT the string
"TOTAL=" followed by the calculated TOTAL. We have our program, and
we activate it by typing RUN (as a command) and pressing RETURN. The
Orie then starts at the first line number and processes each line according to
the sequence of increasing line numbers. Try it.

Well, that wasn't too successful. Unless you have introduced some errors
of your own into the listing (in which case go back to the listing on screen,
using LIST, check until you've found the error, and then re-enter the correct
program line), you will have got a ?SYNTAX ERROR IN 40 error message. Note
that error messages produced when a program is RUN give the line number
at which the Orie stopped the execution of the program because it found a
mistake. This doesn't always mean that the error is in the line whose
number is given, since an earlier error may not have stopped the program
(remember the computer can't know what we're trying to do, it just checks
to see that the lines make sense, even ifthat sense is not what we intended),
but could have produced the later error.

In this case, when we look at line 40 we find no obvious errors. LET is spelt
correctly, the variable names all start with a letter and the arithmetic
expression makes sense (we haven't tried to say LET SELL+VAT=TOTAL, for
instance, which is meaningless to the Orie- the variable which is to be set or
redefined must precede the = sign). So what's wrong? Well, we've just
encountered one of the restrictions on variable names mentioned above, to
whit, that which requires a variable name to not contain a BASIC reserved
word. In this case it is the word TO incorporated in TOTAL. As you become
more familiar with Orie BASIC you are less likely to make this mistake, but it
can be baffling. If in doubt, check the list of reserved words in Appendix 12.
To correct the error we must use a valid variable name. Let's use PRICE.
Since this has the same number of letters as TOTAL, we can cursor up to line
40, copy the line number and LET (and the space after LET), then, with the
cursor over T, type in PRICE, and then copy the rest of the line. Pressing
RETURN puts the revised line into memory. It's important to remember that
what's on the screen may not be what's in the memory if you are doing a lot
of editing. Use LIST frequently, so you know what your Orie has stored.

Line 50 must also be revised, but we can leave the string "TOTAL=" as is,
since we can have anything we want inside the quotes as this is just a
collection of characters to the Orie, and it knows it doesn't have to check for
BASIC words inside the quotes. So copy line 50 up to and including the
semi-colon, and then type PRICE followed by RETURN. The program should
now look like this after you've LISTed it again.

10 REM *UAT Calculation*
20 LET SELL=20
30 LET UAT=0,15*SELL
40 LET PRICE=SELL+UAT
50 PRINT "TOTAL=";PRICE

The Language Lesson 17

Press RETURN, then either take the cursor down the screen to a blank line,
or use CTRL-L. Then enter RUN. When you press RETURN you'll get:

RUN
TOTAL= 23

So we've got a working program, but you might be wondering why we
bothered, since it was hardly an efficient way of doing something that would
have taken us a few seconds with rather cheaper materials such as a stretch
of fiat sand and a finger. The answer lies in the computer's ability to
perform defined tasks quickly and repeatedly. Since we have now got a
working program, with the necessary sequence of small operations defined
which perform the desired task (such a method of producing the desired
result is called an algorithm) and having translated this into BASIC instruc
tions entered into the computer (called coding the program) and test-run
the program, we may consider improvements.

The first thing we need is some way of applying the calculation to
different values of SELL. We could copy line 20, changing the value of SELL,

and then RUN the program again, but there's a better way. We can use the
BASIC instruction INPUT, which tells the Orie to wait for an input from the
user. This needs to be followed by the name of the variable in which
whatever is keyed in will be stored. Enter a new line 20:20 INPUT SELL and
then RUN the program. A question-mark appears, and anything keyed in
appears on screen. If you enter a number, this value will be assigned to the
variable SELL when you press RETURN, and the program will then continue.
The single question-mark doesn't give the user much guidance on what the
Orie is expecting to be entered, and INPUT allows us to provide a prompt
string. The prompt is enclosed in quotes, must be followed by a semi-colon,
and the variable to be input is last. Key in:

20 INPUT"ENTER SALE PRICE";SELL

RUN the program again. Try entering non-numeric values for SELL. The
INPUT is checked by the Orie, and if it doesn't make sense as a number the
message ?REDO FROM START is displayed, and the prompt and question
mark are displayed again, as the Orie waits for more acceptable INPUT to be
forthcoming.

18 The Language Lesson

We could do with a way to avoid entering RUN each time, and BASIC
provides several ways to do this. The simplest (but not the best) is to use
GOTO. This instruction is followed by a line number, and on encountering
this instruction, the fl.ow of program control (which normally follows the
sequence ofline numbers) is diverted to the specified line number. We want
to repeat the whole sequence, starting at line 20, so we add a new line, and a
REMark to comment on the action. This uses an abbreviation for REM (just as
a ? can be substituted for PRINT), which is the apostrophe ('). The use of a
comment for such a simple and self-explanatory instruction may appear
redundant, but we're introducing with a very simple program the same
instructions and techniques that apply in large programs, perhaps with
hundreds of lines of code, which need REMarks to clarify the program's
purpose and structure. This applies as much to the program author as
anybody else, as it is surprisingly easy to find yourselflooking at a program
weeks or days later, and not remember the logic of the way you wrote the
program. Keeping notes of the process of program development, and
scattering REMs around the program, can help avoid such irritating and
time-consuming problems.

\0 REM *UAT Cdlculdtion*
20 INPLJT"ENTER SALE PRICE";SELL
30 LET UAT=0. 15*SELL
40 LET PRICE=SELL+UAT
50 PRINT "TOTAL=";PRICE
60 'Round d9din for next cdlculdtion
?0 GOT020
Every time the program encounters line 70, the program fl.ow is sent to line
20, and the process repeats. This procedure can only be halted, with the
program as it stands, by using CTRL-C instead of INPUTting the value of
SELL. This performs a BREAK operation, halting the execution of the
program. CTRL-C will halt any operations, but the program cannot be
restarted, so it is mainly used to abort a program that is not performing as it
should, or to get out of endless loops. Despite all the other stuff in between,
our program is equivalent to:

\0 PRINT "LOOP"
20 GOTO 10

There are better methods of arranging program loops, you will be glad to
hear, but we'll deal with those in Chapter 4.

If you RUN the program again we can now do repeated calculations, and
we're getting to the point (finally!) where you might be able to appreciate
the value of computers, since your Orie will now do repeated calculations as

The Language Lesson 19

quickly as you INPUT data for it to work on. Of course, unless you happen to
be a shopkeeper or suchlike, you may not feel that it enhances your life, but
that's another matter.

For now, you're being introduced to the BASIC language, and it's as good a
program as any to work with. Fun, flashing colours and electronic music
have to wait until we've covered the essentials of BASIC, unfortunately.

So, for the moment, what else can we do with our admittedly somewhat
tedious program? Well, currently the screen scrolls with each new PRINT

statement encountered. It would be nice if each calculation started on a
fresh screen. We've seen CLS as a direct command, and we can also use it in a
program line. Enter a replacement for the current line 70:

70 CLS:GOTO 20

We've now got a line with two instructions, separated by a colon. This
operates just as in an English sentence: First one statement is executed, and
then the second. You can have as many statements on a single line as you
want (up to the line length allowed), but there must be a colon after each
statement.

If you RUN the program, you'll see that line 70 works, so that the screen is
cleared, and the program then Goes TO line 20. There are a couple of
problems, though. Firstly, the screen doesn't clear before the first prompt
is printed, and secondly there's no time for the result to be read - it just
flashes up something, and then as quickly erases it. What do we do about
this? Orie BASIC has a statement that halts program execution for a specified
time: WAIT. This is followed by a number specifying how many hundredths
of a second the delay will be. WAIT 100 will stop the program for 1 second, so
we can try putting in a delay whilst the result of our programis displayed.
Again, we'll just add it into a new line 70, which now has 3 statements in it.
EDIT line 70 so that the program reads as follows:

10 REM *UAT Calculation*
20 INPUT"ENTER SALE PRICE";SELL
30 LET UAT=0.15*SELL
40 LET PRICE=SELL+UAT
50 PRINT "TOTAL=";PRICE
60 'Round a.9a. in for next co. lcu lat ion
70 WAIT 500:CLS:GOTO 20

We now have a program that waits whilst we have the result on screen, but
the delay is inflexible. We could do with a way of allowing the user to tell the
Orie when a new calculation is to be performed. We've used strings thus far
only as characters between quotes, but we can also have string variables,

20 The Language Lesson

which store strings of characters in the same way as numeric variables hold
numbers. The variable names have to follow the same rules as those for
numeric variables: no reserved words in the name, first character of the
name a capital letter, and the rest any combination of capital letters and
numbers. The variable is defined as a string variable by adding$ to the end
of the name. W$, NAME$, ST12$, would all be valid string variable names.
String variables can be PRINTed, INPUT and assigned using the (optional)
LET statement and the= sign, in the same way as numeric variables. Again,
only the first two letters of the variable name are recognised. The value
assigned to a string variable is a string of characters, and not a number, and
although we could give a string variable the value '123' this is still just a
sequence of characters. The program below can be entered with our VAT
program still in the Orie:

l 10 A$="0RIC"
120 LET Al$="BASI·C"
130 LET LAST$="LESSON"
140 INPUT"ENTER YOUR NAME,PLEASE";NAME$
150 CLS:PRINT A$;" ";Al$;" ";LAST$
160 PRINT "FOR ";NAME$

We can RUN just the portion of the program from line 110 onwards by using
a different format for RUN. Entering RUN110 as a command will start the
program execution at line 110. Line 110 assigns 'ORIC' to the string variable
A$, without using LET, and AI$ and LAST$ are assigned in lines 120 and 130,
with LET used. Line 140 uses INPUT with a prompt string, for which the
format is the same as that used with numeric variables. 150 clears the
screen, then PRINTS the three strings in sequence, separated by spaces
between quotes, and line 160 prints FOR, followed by a space, and then your
name stored in NAME$.

We could also use GOT0110 (or GOTO 110, since, as is usually the case with
the Orie, the spaces don't count), to start the program from line 110. This
would apparently have the same effect as RUNll0, but there is a difference.
Try using GOT0110 to start the program again. The difference can be shown
by using GOTOI60. This will PRINT out FOR, followed by the name that was
INPUT last time the program was executed from line 110. The old value of
NAME$ was preserved. If you now RUNI60, you will just get FOR, because the
variable NAME$ has been CLEARed of what it stored. In a program or as a
command, CLEAR is used to wipe out any existing contents of variables.
Strings revert to an empty or null string (not a string of spaces), and
numeric variables to zero. The difference between using RUN and GOTO
(line number) to start a program is that RUN does an automatic CLEAR
operation before starting. RUN110 again, then enter CLEAR as a command,

The Language Lesson 21

and PRINT NAME$. You will get nothing on screen, since NAME$ now has
nothing in it.

Having completed our digression through strings, RUN and GOTO, we can
deal with the problem of our VAT program again. Eradicate lines 110 to 160,
by entering just the line numbers and then RETURN. Remember this doesn't
alter the screen display, so LIST the program again to check they're all
non-existent.Enter the following new lines:

65 'First.. get.. k e yb o o. rd input..
66 GET A$

We now know what A$ represents. GET is an instruction that tells the Orie to
wait until a key is pressed, and then store a single-character string in the
following string variable, corresponding to the key that was pressed ('X' if
you press X, etc.). The result of line 66 is to wait until a key is pressed,
before the program moves on to the next program line. The WAIT 500
instruction can now be edited out of line 70. Your program should now look
like this:

10 REM *UAT Co.lculo.t..ion*
20 INP!JT"ENTER SALE PRICE" ;SELL
30 LET UAT=0. 15*SELL
40 LET PRICE=SELL+UAT
50 PRINT "TOTAL=";PRICE
60 'Round 0.90.in for next. co.lculo.tion
65 'l="irst get keyboard input
66 GET A$
.70 CLS:GOTO 20

RUN the program again, and confirm that GET works as stated. Notice that
we don't do anything with A$ when we use GET in this way, since we're not
interested in which key was pressed, just in the fact that some key was
pressed by the user of the program.

This brings up another point which should be borne in mind when
writing a program. We know that a key is to be pressed because we've
written the program. Anyone else needs instructions and guidance. This is
referred to as making a program 'user-friendly'. Below is a listing of an
improved version, with some more friendly features.

10 REM *UAT Co.lculo.tion*
15 CLS
20 PING:INPUT"ENTER SALE PRICE";SELL
25 PRINT :PRINT"SELLING PRICE='' ;SELL; "Po

unds"

22 The Language Lesson

30 LET UAT=0. 15*SELL
35 PRINT "UAT on'' ;SELL; ''Pounds=" ;UAT;"P

ounds"
40 LET PRICE=SELL+UAT
50 PRINT "TOTAL=" ;PRICE;"Pounds"
60 'Round 0.90.in for next
61 'Print prompt
62 PRINT:PRINT"Press o.n >'

other entry"
65 'Get keyboard input
66 GET A$
70 CLS:GOTO· 20

co.lcu lat ion

key to rno.k e o.n

Line 15 has been added to clear the screen before anything else happens.
Line 20 has had PING (one of the Oric's predefined sound commands) added
to provide an audible INPUT prompt. PINGS companions are ZAP, EXPLODE

and SHOOT, and are useful simple sound commands. (See the Keywords and
Sound chapters for more information.) Lines 25 and 35 have been added to
clarify the operations the program is performing, and the units (pounds)
have been stated. Line 61 is a REMark referring to line 62, which tells the
user what he or she has to do next.

Key in this final version of our program. If you wish to experiment with
saving programs on to tape, Chapter 6 has the details of how to go about
this, and you might as well experiment with this program.

Make sure you understand all the bits of BASIC we've used thus far.
Chapter 9 contains every Orie BASIC keyword in alphabetic order, with the
format required and its definition. You might usefully check through the
definitions of Chapter 9 for all the BASIC words we've encountered.

We'll proceed with this introduction to BASIC by considering the way data
is held in the Orie, and the ways this can be manipulated.

3 Building with BASIC

We've now seen some of the Oric's BASIC instructions, and how they are put
together into a program. There are three essential elements to any program,
however complicated, whether we want exciting alien hordes or boring
VAT figures as our end result. The Orie, or any other computer, needs data
(which may be defined within the program or INPUT), plus a set of
instructions as to how to process said data, and how to display the result.
Before we move on to introduce more complex BASIC instructions we need
to know more about the way the Orie deals with data.

We've seen the two types of data - string and numeric - that the Orie can
handle. The numeric variables we've using are real or floating point
variables (ordinary decimal numbers in fact). The biggest number the Orie
can hold is l.70141E+38 and the smallest is 2.93874E-39. These are
expressed in exponential, E or scientific notations, which the Orie itself
uses to display numbers outside the range of999999999 and 0.01. Try the
two following programs to see how the computer changes its display as the
numbers become larger or smaller, and note the different results of going
outside the available range.

10 N=2
20 N=N*8
30 PRINT N
40 WAIT10 :GOT020

10 N=3
20 N=N/2
30 PRJNT N
40 WA IT 10: GOT020

Exponential format provides a way for the Orie to display very large or
small numbers concisely. Numbers in exponential format are always
displayed as a decimal between 1 and 9.99999999, followed by E, followed
by a number between + 38 and - 39. The exponent value defines how many
places the decimal point is shifted (to the right if the exponent is positive,
and to the left if it is negative) to get the correct number. Put another way, it

24 Building with BASIC

defines how many times the mantissa (the decimal value before the E) is to
be multiplied (E positive) or divided (E negative) by 10. Thus l.23E+09 is
1230000000.0 and S.67E-04 is 0.000567. The Orie used two-digit
numbers for the exponent, and always includes the + sign for positive
exponents, but it will accept numbers without either a leading zero or the
plus sign. For example, l.23E9 would be accepted as a valid input. Try
inputting small and large numbers, in both the exponent and standard
formats to acquaint yourself with the system.

The Orie can handle integer (whole number) values between 32767 and
- 32768, and has a separate type of variable to store such number. Integer
variables are identified by appending % to a valid variable name. Thus 1%,
N4%, WHOLE% are all valid names for integer variables. They can be
assigned non-integer values, but in this case the number will be rounded
down to the next smallest integer (not to the nearest integer). Enter the
following program to see this in action:

10 LET 8X=6
20 8X=8X/2.23
30 PRINT Bx
40 REALUAR=4.845
50 WHOLUARX=REALUAR
60 PRINT WHOLUARx
70 Rx=-3.4
80 PRINT Rx

Note especially what happens to a negative number. In rounding down
negative numbers, we need to remember that -1, is smaller (less than)
zero, - 2 smaller than -1, etc. Hence the next smallest integer to -4. 6 7 is
-5, and so on. Integer variables are processed more quickly in calculations
than floating point variables, and also take up less memory, so they should
be used whenever possible if speed or economy of memory is important to a
program.

The Orie also recognises hexadecimal numbers. These are numbers
representing a different number system which is frequently used in com
puting, since it allows convenient and concise representation of binary
numbers. Binary numbers are the sequences of zeros and ones used by the
Orie (and all other computers) to hold all forms of data memory.

Binary representation is used because the electronic switches which are
the basis of computers can only be either off or on, and each 'switch' is used
to represent 1 when on and 0 when off. There's more on number systems
later (see Chapters S and 10), but for the moment all you need to know is
that the Orie will accept, both in a program, and as input, anything
preceded by the hash sign, #, which is a valid hexadecimal number. Try

Building with BASIC 25

printing #FFFF, #1, #A, #10, as examples, and sneak a look forward if
you can't wait for the explanation. The Orie has internal routines that
convert all the binary numbers into outputs we humans can cope with more
easily, such as decimal number (and hexadecimal, for the computer freaks),
and vice versa, when we enter numeric data.

We've introduced strings and string variables, but since we've just said
that all the information in your Orie is in the form of binary numbers, how
come we get letters and symbols on the screen? Well, they're (binary)
numbers too. Each character that appears on the screen has an associated
character code, (known as its ASCII code). The full list of all the character
codes is given in Appendix 1.

We now move into the area of BASIC functions.
Orie BASIC contains functions which perform various manipulations on

the data it holds. Some of these allow us to convert one type of data into
another. We can find the numeric code of a character using the string
function ASC. The format we need to use with ASC is to place the character of
which we want the code inside brackets. Try entering:

PRINT ASC("A")

You'll find 65 is PRINTed out, which is the ASCII code for A. The program
below does this repeatedly for any character (SHIFTed or not) that you enter
as A$, using GET. Note that the string inside the brackets can be either a
literal string in quotes, as above, or, as in the program, a string variable. All
functions require what is known as an argument (the thing inside brackets)
which they operate on, and are said to return a result (the ASCII code of the
string argument, in this case).

10 PRINT"PRESS A KEY"
20 GET A$
30 PRINT"YOU PRESSED "A$
40 PRINT"THE CODE FOR "A$"="ASCCA$J
50 GOTO 10

When you've had enough of pressing keys and seeing the ASCII codes
PRINTed out, try stopping the program using CTRL-C. You'll find that
instead of breaking into the program, you're informed that you pressed a
blank, and that the code for a blank is 3. The ASCII code for CTRL-C is 3, but
since this is a non-PRINTing character, we don't get anything on screen.
You'll have to use the RESET button underneath your Orie to stop the
program. (You will probably need a biro or something similar to get at the
button inside the square hole.)

Notice that since this program does not use semi-colons as separators

26 Building with BASIC

between PRINT items, the PRINT line, although it works, is not as easy to read
as it would be if semi-colons were used.

The reverse Junction ro ASC is CHR$. This takes a number between 0 and
255, which is the valid range of the argument, and returns a string
containing the character whose ASCII code is that number. Having RESET

your Orie, add line 45 to the program, so that it LISTS like this:

10 PRINT"PRESS A KEY"
20 GET A$
30 PRINT"YOU PRESSED "A$
40 PRINT"THE CODE FOR "A$ 11 ="ASCCA$J
45 C=ASCCA$J :PRINT "CHR$C 11 ;c; 11 J GIUES "

;CHR$CCJ
50 GOTO 10

Line 45 takes the number returned by ASC(A$), and assigns it to the variable
c. This is then inserted into the middle of the PRINT statement (which does
use semi-colons) and taken as the argument for CHR$ at the end of the line.
RUN the program. Again you'll have to use the RESET button to stop the
program. Notice that because the numeric value c was used, there is both a
leading space and a trailing space attached to the number. The correct
format for CHR$ is CHR$(1), where I is a number 0 to 255, with no spaces, as in
the actual function at the end of the line 4 5

Strings and numeric values can be translated using VAL and STR$. VAL has
the format VAL(a$), where a$ means any string literal or variable with initial
characters that the Orie can interpret as a number. Try this program to
experiment with VAL:

10 PRINT 11 INPUT A NUMBER"
20 INPUT NUM$:NUM=UALCNUM$J
30 PRINT "THE STRING 11 ;NLJM$; 11 CAN BE TU

RNED INTO THE NUMBER ";NUM
40 PRINT "2* 11 ;NUM; "=" ;2*NUM
50 GOTO 10

VAL will evaluate and return the result of any string interpretable as a
number, up to the first non-numeric character. Try entering 23DF, +45,
#F6 (hexadecimal format), #2BK (Knot a valid hexadecimal character),
1E4 (exponential notation), 23.6E7, -23.6E9, and 2*3 to illustrate the
action of VAL with different strings. Because we're using INPUT in this
program, you can use CTRL-C to break the progi:am at the INPUT prompt.

The inverse function to VAL is STR$, a string function which returns the
string containing the result of evaluating a numeric expression. The
expression or number is evaluated by the Oric's arithmetic routines and is

Building with BASIC 27

then changed into a string, so we get the same result (but as a string) as if a
number had been printed on the screen. So complex expressions (possibly
including other functions) can be turned into the string equivalent of their
result. We can have lines like:

and, to illustrate the use of other functions in the argument of STR$, try:

10 LET A$="3. 567E7"
20 PRINT STR$C123/12.4*UALCA$JJ
An important point to note about functions which involve arithmetic
calculation is that they have the highest priority in evaluating an expression,
above exponentiation. The result of applying a function to an argument is
evaluated first, before any other calculations are worked out.

The other string function for numeric conversion is HEX$. This returns
the string form of the hexadecimal number equivalent to the argument. For
example, HEX$C4I8) returns #IA2. Since hexadecimal numbers can only be
integers between 0 and 65535, any numbers outside that range will give a
?ILLEGAL QUANTITY ERROR, and any non-integer values will be auto
matically rounded.

A numeric function associated with those we've been dealing with is INT.
This performs the same operation as occurs with integer variable and, as
we've just noted, hexadecimal numbers, that "of rounding down a number
to the next smaller INTeger. We use INT whenever we want a whole number
value for a number, and the Orie does the same thing automatically for the
arguments of functions that need an integer value. Try PRINT CHR$(67.9), for
example, and you'll get c appearing on screen. The Orie rounds down, and
takes 67 as the value of the argument, since character codes can only be
whole numbers. A valuable use of INT is in rounding numbers to a specified
number of decimal places. This is based on the fact that, whereas INT(n)
rounds down, INT(n+0.5) rounds to the nearest integer. Thus INT(3.7) gives 3,
but INT(3.7+0.Sl equals INT(4.2), which gives 4. Rounding 4.567 to two
decimal places, for example, involves rounding .067 to .07. We can code a
program line to do this by multiplying by 10 to the power of the number of
d.p. we require, adding 0.5, using INT on this value, and then dividing by
the same power of 10. We can produce a program that will round to a
specified number of places.

p

10 REM *ROUNDING TO DP DECIMAL PLACES*
20 INPUT"ENTER A NUMBER ";N
30 INPUT"HOW MANY D.P.";OP
40 LET ROUNONUM=CINTCN*10AOP+0.5))/10AO

50 PRINT ROUNDNUM

28 Building with BASIC

We've seen how strings can be converted to numbers and vice versa, but
what about manipulating strings as strings? Well, we can extract sections of
strings, using the functions LEFT$, RIGHT$ and MID$, and add strings
together. String addition (called concatenation) uses the + sign, and simply
joins the strings together, like this:

t0 LET A$=="0r i c-1 JI
20 INPLJTJIWhat 's your no.me JI ;NAME$
30 LET B$=="BASIC Lesson"
40 LET SPACE$=" "· REM sing le space
50 LET A$=A$+SPACE$+B$
60 LET GREET$=="Hi,"+NAME$+",glad you co

u l d make it ''
?0 PRINT GREET$
80 LET BASI C$==''For your" +SPACE$+A$
90 PRINT BASIC$

To illustrate string slicing here's an example of LEFT$ in action:

t0 A$=="PORTAGE"
20 B$=="ANDALUCIA"
30 C$="STARTLED"
40 0$=="ARDENNES"
50 L$==LEFT$CA$,4J
60 AN$==LEFT$CB$,3J
?0 PRINT L$
80 PRINT AN$
90 R$=LEFT$("BOAT", 2J+LEFTCD,.3J
100 R$=LEFT$CC$,4J+R$
110 PRINT R$

The argument of LEFT$ is the string from which characters are to be
extracted, and the value of the number of expression following the comma
specifies how many characters, starting from the beginning of the string,
are required.

All the Orie functions, along with the other BASIC keywords, are defined
and illustrated in Chapter 9, to which you should refer whenever one you're
unfamiliar with is used or mentioned in the rest of this handbook, and for
additional information for the ones covered in this introduction to BASIC.
Refer to Chapter 9 for RIGHT$ and MID$, and the final string function, LEN.
This function returns the LENgth of a string, i.e. the number of characters
in the string.

Building with BASIC 29

Orie BASIC has the following built-in numeric functions:

ABS(n)
ATN(n)
COS(n)
EXP(n)
INT(n)
LN(n)
LOG(n)
Pl

RND(n)
SGN(n)

SIN(n)
SQR(n)
TAN(n)

Returns absolute magnitude of n
Returns arctangent of n
Returns cosine of n
Returns e raised to the power of n
Returns n truncated to integer
Returns natural (base e) logarithm of n
Returns common (base 10) logarithm of n
Returns value of rr
Returns a random number
Returns 0 if n zero,
1 if positive,
-1 if negative.
Returns sine of n
Returns square root of n
Returns tangent of n

Note that PI does not have an argument, but just returns the value of the
constant PI(ir). Numeric functions perform difficult calculations, for which
we would otherwise have to write complex programs every time we wanted
to include them in calculations.

We'll take cos as an example of a numeric function . This calculates the
basic trigonometric ratio of the cosine for the angle specified by the value of
the expression in brackets.

In the format COS(n) the argument n may be a number, a numeric variable
or an expression (which can include other numeric functions). The angle is
measured in radians, and not degrees. (360 degrees= 2*PI radians.) For the
right-angled triangle shown below, the cosine of the angle at A will be the
ratio of adjacent side/hypotenuse (AC/AB).

Unless you know about trigonometry, you are unlikely to want to use the
Oric's trigonometric functions very much. They are, however, useful in
defining screen positions when using the Oric's High RESolution graphics
mode, which we'll deal with in Chapter 7.

As well as the inbuilt numeric functions of the Orie, of which we've met
cos and INT, there is a way to DE Fine your own FuNctions, using the DEF FN
statement. The user (that's you!) gives a definition of the required function

30 Building with BASIC

at the beginning of the program, with a statement of the form:

DEF FNv(z)=numeric expression

The v is the function name (a single letter A-Z), and the z is a standard
numeric variable name. The expression that follows is a numeric expression
which can include any other numeric functions, and uses the variable z as
part of the expression. The defined function is then called in the same way
as a standard function, with the name (FN followed by whatever letter was
used), and a value or parameter within brackets. Let's take a look at an
example:

5 REM*Define FuNction M to convert feet
to metres
10 DEF FNMCFEETJ=FEET*0.3048
20 INPUT"HOW MANY FEET";X
30 M=FNMCXJ
40 PRINT X;"FEET EQUAL";M;" METRES"

We've defined a function called M, with an argument FEET, such that the
function M multiplies the variable FEET by the conversion factor 0.3048 to
give us the equivalent number of metres. When the number of feet is input
in line 20, the value is assigned to the variable x . In line 30, the variable M

(which is a different thing to the function name M) is given the value FNM(X),

meaning 'look for the function called M, and calculate the resulting value,
using the value of X to replace the variable name used in the argument and
the expression following the equals sign' . The variable in the brackets is
known as a 'dummy variable', since it only serves to define a sequence of
operations, and is replaced by a variable which has had its value defined in
the program when the function is called using FN. At any point in the
program (as long as it's after the DEF FN statement) we can use the defined
functions, using any value we wish to insert in place of the dummy variable.
Here's another example:

10 REM *Define Functions for inches to
cm, and for o. re a o f c i r c le*

20 DEF FNCCIJ=1*2.54
30 DEF FNACRJ=P1*RA2
40 INPUT"Radius 0 f CI r Cle Ci n inches)";

RAD
50 CMRAD=FNCCRADJ
60 AREA=FNACCMRADJ
70 PRINT "Area is" ;AREA;" sq . cm. II

Building with BASIC 31

Line 20 uses the dummy variable I to define a conversion function (FNC). for
inches to centimetres, and line 30 defines FNA so as to give the area of a circle
(7Tr2) using the dummy variable R, and the inbuilt function PL Line 50 uses
the INPUT value RAD as the parameter for FNC (replacing the dummy
variable I), to get the radius in centimetres as CMRAD, which is used in turn
as the parameter for FNA in line 60. Since, as with the use of PI, we can use
any function in the DEFinition, lines 50 and 60 may be combined:

10 REM :l:Define Functions foT inches to
cm, o.n d f o T o. re o. o f c I Tc le*

20 DEF FNCCIJ=I:l:2.54
30 DEF FNACRJ=PI:l:RA2
40 1NPLJT"Ro.dius of ciTcle (in inches)";

RAD
50 AREA=FNACFNCCRADJJ
50 PRINT "ATeo. is" ;AREA;" sq.cm."

In fact, a single function will take care of the whole calculation:

10 REM:l:De f in e fun ct Ion for sq.cm. o. Teo.
of ciTcle fTom Tddius in Inches*

20 DEF FNACRADJ=CRAD:l:2.54JA2:1:Pl
30 I NPLJT "Ro.d i us of c i Tc le (in inches J" ;

RAD
40 AREA=FNACRADJ
50 PRINT "ATeo. is 11 ;AREA;" sq. cm. 11

Notice that here we've used the same name for the actual variable used in
the calculation as for the dummy variable. As many functions as we require
up to the maximum of 26 allowed by single letter names can be used in a
program, to avoid repetitive calculations.

Before we can consider the two final methods of data storage available in
Orie BASIC, we need to introduce you to loops. Repeated operations occur
frequently in programs, and there are various types of loop structure that
can be used. The simple GOTO.loop we've met has a serious problem-it can
only be stopped by breaking into the program. The Orie has a FOR ... NEXT
structure available, which we can use whenever a sequence of program
statements is to be repeated a definite number of times. A FOR .. NEXT loop
is set up using a statement of the form:

FOR v=nl TO n2 STEP n3

which defines a variable v (a standard numeric variable) which will control

32 Building with BASIC

the loop, and two numeric expressions which initialise the start value (nl)
and define the finish value (n2) of the loop. The STEP statement may be
omitted only when the STEP value (n3) is 1. The loop variable is set to the
start value, and the program continues until it meets a NEXTv statement.
The value of the loop variable is checked, and if it is not greater than or
equal to the finish value the STEP value is added, and the program loops back
to the statement following the FOR .. statement. Notice this is the state
ment, not the program line following the FOR .. . statement, so that we can
have a FOR .. NEXT loop all on one line:

10 FOR L=l TO 5:PRINT L*L:NEXT L

If the STEP value is negative, the loop variable is checked to see whether it is
less than the finish value:

10 FOR L=10 TO 5 STEP-l:PRINT L*L:NEXT
L

The facility to use the value of the variable controlling the loop in
expressions within the body of the loop is very useful:

10 CLS
20 FOR LOOP=0 TO 25
30 PRINT CHRSC65+LOOPJrCHRSC97+LOOPJ;
40 NEXT LOOP

FOR .. NEXT loops are often used in conjunction with another way of storing
data within a program, using READ and DATA. A program line, or sequence
of lines, starting with DATA is used to hold strings or numbers, separated by
commas. These can go anywhere in the program, and the Orie starts with
the first DATA item when a READ statement is encountered, which places the
number or string into the variable which follows READ (which must be the
appropriate type for the DATA). A pointer is then placed against the next
DATA item, which will be the one used when the next READ instruction
comes along. RESTORE will reset the pointer back to the start of the DATA
items. The principle is shown in the next program, which uses a loop to
READ and PRINT the string DATA, and then RESTORES the DATA pointer, so
that the days can be READ and PRINTed again. Notice that the loop variable
is not specified after the NEXT statements, which is permissible, but
potentially confusing, and that string DATA items do not need quotes
(although they may have them, and must ifthe strings are to contain leading
or trailing spaces, commas, or colons).

Building with BAs1c 33

10 REM*READ o.nd DATA*
20 FOR 0=0 TO 6
30 READ D$
40 PR1NT D$
50 NEXT
60 REM . . . lots more program
70 '
2000 DATA MONDAY,TUESDAY,WEDNESDAY,THUR

SDAY
2010 REM ... more program in between
3000 DATA FRIDAY, SATURDAY,SUNDAY
4000 REM .. co.n do it 0.90.in
4010 RESTORE
4020 FOR K=l TO 7
4030 READ DAY$:PRINT DAY$:NEXT

The final form in which the Orie can hold strings or numbers is as arrays.
These are normally set up using the DIM statement, and you should turn to
the entry for DIM in Chapter 9 before going any further.

OK, you now know what an array consists of. The usefulness of arrays is
not only that they allow storage of similar items of data without the
definition of an individual variable for each item separately, but they are
also indexed by their subscript number(s). This allows us to cross-reference
and perform operations on the elements of arrays easily. Here's a short
example which demonstrates the way in which arrays enable otherwise
difficult operations to be programmed simply:

10 INPUT"HOW MANY NAMES" ;Nx
20 DIM NAME$CNx):OJM AGECNx)
30 CLS:SLJM=0
40 FOR K=1 TO N..<
50 PRINT "ENTER NAME t'-10. "K

60 INPUT NAME$CK)
70 PRINT NAME$CKJ"'S AGE ?"
80 INPUT AGECKJ :SLJM=SLJM+AGECKJ
80 CLS
100 NEXT K
110 FOR K=Nx TO 1 STEP -1
120 PRINT :PR1NT NAME$CKJ" JS";

34 Building with BASIC

130 PRINT AGECKJ" YEARS OLD"
140 NEXT K
150 PRINT:PRINT "TOTAL AGE"SLJM" YEARS"
160 PRINT"AUERAGE AGE"SIJM/NX" YEARS
170 END

We can use the INPUT variable N% to DIMension two arrays to the size
required, and to set the FOR . . NEXT loops identically. Note that humans
often find it easier to consider arrays as having subscripts starting at 1, as
here. This just leaves the array elements NAME$(0) and AGE(0) unused. The
value of the loop variable is used to access each pair of array elements in
sequence, once for INPUT and once for PRINTing out. The total age can be
easily SUMmed at the same time.

Loops within loops are known as nested loops. We can have as many levels
of nesting as we want, up to a maximum of 10. The important thing is that
the loops must be correctly nested, with each loop entirely within the one
outside it:

30 FOR A· 1 TO 6
40 FOR B • 1 TO 3 I

Inner Loop .

_____ 1 _____ 0 r .. Loop 80 NEXT B

121 NEXT A

Nested loops can be used to access and initialise multi-dimensional array
elements:

10 DIM NXC10,3)
20 CLS
30 FOR K=l TO 10
40 ~OR J=l TO 3
50 NxCK,JJ=K"J
60 PRINT NxCK,JJ
70 NEXT J
80 PRINT
90 NEXT K

DATA can also be READ into arrays:

1'21 ~If1

20 FOR
30

M$C:21 :OJM 0XC12J
K=l TO 12
READ M$CKJ

40 READ Dx(KJ
50 NEXT K

Building with BASIC 35

60 INPLJT"WHlCH MONTH C1-12J" ;MNTH
70 PRINT M$CMNTHJ ;" HAS ";DxCMNTHJ ;" DA

(S"
100 DATA JANUARY,31,FEBRUARY,28,MARCH,3

1,APRIL,30,MAY,31,JUNE,30
110 DATA JULY,31,AUGUST,31,SEPTEMBER,30

,OCTOBER,31,NOUEMBER,30,DECEMBER,31

The Orie stores the address of the line or statement after the FOR .. TO

statement (to which program control passes back on encountering a NEXT

statement) in a stack, a last-in first-out pile. This is the reason the variable
name may be omitted (the Orie doesn't mind, but including the variable
helps humans read a program listing), and also why loops must be correctly
nested, since the Orie just looks at the address on the top of the pile. After a
loop is completed, the address is removed, and a subsequent NEXT will
activate a jump to the address now on the top of the pile. The stack can only
hold 10 addresses, and more than 10 loops will give an ?OUT OF MEMORY

ERROR message.
The same stack is used for the other type ofloop available on the Orie, the

REPEAT .. UNTIL structure. We'll deal with this in the NEXT chapter.

4 Loops beyond
compare

An alert reader might have noticed that the FOR ... NEXT loop structure
implies that the Orie is capable of making decisions about whether one
number is greater than another, since the loop variable has to be checked
against the end value of the loop before the Orie can decide whether to run
through the loop again or continue with the next statement.

Well, we can also do this in BASIC, and in fact this capability is crucial to
programs, since decisions can be made, and the sequence of actions shunted
on to different sequences of operations. Introducing REPEAT . . . UNTIL loops
brings the question to the forefront, since REPEAT ... UNTIL structures
REPEAT a sequence of operations UNTIL a condition is met.

Conditions are tested by means of conditional operators:

Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
< = Less than or equal to

These operate much as you would expect for numeric values. Two things
need to be remembered, however. The first is that, for negative numbers,
- 6 will be less than - 5, and so on, and the second is that the Orie, like any
computer, is not totally accurate in its calculations. Where complex
numerical operations have been performed to produce a number to be
tested for equality with another, there is the possibility that the least
significant figure of the value will be in error. In such cases it is better to take
the ABSolute (positive) value of the two figures, and then test that the
difference is less than an acceptable amount. Refer to the ABS section in
Chapter 9, and see the program below:

10 LET NINECUBE=9*9*9
20 IF NINECUBE=9"3 THEN PRINT "TRUE" EL

SE PRINT"FALSE"
30 IF ABSCNINECUBE-9"3J<1E-7 THEN PRINT
"TRUE" ELSE PRINT"FALSE"

Loops beyond compare 37

What's the IF . . . THEN . . . ELSE statement in line 20? It tests whether the
variable NINECUBE equals 9 j 3, and decides whether the condition is true
or false . IF the condition is true THEN it performs the operations specified
after THEN, and goes on to the next program line, ignoring ELSE and
anything that comes after it. IF the condition is false, THEN and the
following statement(s) are ignored, and the statement(s) following ELSE are
performed before moving to the next line. So we have a program structure
that says: IF (condition is true) THEN (perform true task) ELSE (perform false
task).

In line 20, however, the condition will evaluate as false, and PRINT out
"FALSE", in line 30 the condition will evaluate as true, and "TRUE" will be
PRINTed.

The ELSE part of an IF . . . THEN construct is optional. When there is no
ELSE statement, control will pass on to the next line, with the statements
following THEN having been executed if the condition was true, and ignored
if the condition was false.

10 A=2:INPUT"ENTER A UALUE 0-5" ;C
20 IF C>A THEN PRINT "C>A"
30 PRINT "THIS IS ALWAYS PRINTED"
40 GOTO 10

If we wanted to use ELSE, we might write a line 20 as below:

10 A=2:JNPUT"ENTER A UALUE 0-5";C
20 IF C>A THEN PRINT "C)A" ELSE PRINT "

C<A"
30 PRINT "THIS IS ALWAYS PRINTEO"
40 GOTO 10

However, if you enter 2 for the value of c, we'll get "C<A" PRINTed out. Is
this the result we want, you may well ask? Well, we are now in the realm of
logic, and we must watch our complements. One or the other of the
THEN ... and ELSE . .. statements must be performed. Computers are
sticklers for excluding the middle of a sorites, so it's either one thing or the
other. What we need to do is recognise the true complements, since it is our
mistake, not the Oric's. The opposite, or complementary condition, to> is
< =, not <. The relationships are:

<> complements
< complements > =
> complements < =

So our logically correct output would be produced by the following:

38 Loops beyond compare

10 A=2:INPLJT"ENTER A UALLJE 0-5" ;C
20 IF C>A THEN PRINT "C>A" ELSE PRINT "

C<=A"
30 PRINT "THIS IS ALWAYS PRINTED"
40 GOTO 10

With the use of an IF . .. THEN conditional test, we can produce the
equivalent of a FOR ... NEXT loop, called a counter loop. The program below
sets a counter C, increments it by 1 in line 40, and checks the value in line
50, after the body of the loop. A variation of the IF ... THEN format is used. If
the statement after THEN is GOTO (line number), it may be replaced by
IF ... GOTO, omitting the THEN, or by IF ... THEN (line number), omitting the
GOTO. The Orie interprets all these formats identically, GOTO may similarly
be omitted after ELSE, if desired.

10 REM Counter Loop
20 C=l
30 PRINT"COLJNTER UALLJE "C
40 C=C+l
50 IF C<4 GOTO 30
60 END

If the condition C<4 is true, the program will loop back to line 30. Notice
that with this condition the loop will execute three times. If we replace the
condition in line 50 with C<=4, it will then execute four times, and be an
exact equivalent of a FORC=l T04 loop. Using ELSE would give us:

10 REM Counter Loop
20 C=l
30 PRINT"COLJNTER UALLJE "C
40 C=C+l
50 IF C<=4 GOTO 30 ELSE END

The REPEAT .. . UNTIL construct is started with a REPEAT statement, and the
program executes the statements in the body of the loop UNTIL a condition
is set. If the condition is true, the loop terminates, and the program
continues with the statement after UNTIL (condition). If the condition is
false, the program loops back to the statement after REPEAT. This can be
used for the same sort of counter loop:

10 REM REPEAT .. LJNTIL Loop
20 C=l
30 REPEAT

40 PR1NT"REPEAT "C
50 C=C+l
60 UNTIL C=4

Loops beyond compare 39

However, the UNTIL condition can refer to any condition whatsoever, and is
an extremely flexible structure. The following program uses a
REPEAT . . . UNTIL loop to calculate the factorial of a number:

10 REM*FACTORIALS*
20 INPUT"ENTER AN INTEGER";Jx
30 N.t=Jx-1 :FACT=J.t
40 REPEAT
50 FACT=FACT*Nx
60 Nx=Nx-1
.70 UNTIL N.t=0
80 PR1NT"FACTORIAL" ;Jx; "= " ;FACT

They can be useful in data entry routines:

10 REPEAT :UNTIL KEY$="G"
20 PRINT"END

10 REPEAT
20 1NPUT "ENTER A NUMBER BIGGER THAN 9" ;

NX
30 UNTIL Nx>S
40 REM REST OF PROGRAM

The Orie assesses the truth or falsity of a condition by comparison between
numbers and, since it knows of nothing else, also assigns a numeric value
(-1) to represent true and considers 0 as false. There are system constants
TRUE and FALSE in Orie BASIC to represent these values. Whilst they only
substitute for numeric values, their use can help make a program more
comprehensible to humans. Take the endless loop:

10 REPEAT
20 REM PRINTS FOREUER
30 PRINT "ONWARDS"
40 UNTIL FALSE

or we could replace the condition N%=0 with N%=FALSE in the factorials
program:

40 Loops beyond compare

10 REM*FACTORIALS*
20 INPUT"ENTER AN INTEGER" ;Jx
30 NZ=JZ-1 :FACT=Jz
40 REPEAT
50 FACT=FACT*Nx
60 NX=NX-1
70 UNTIL Nx=FALSE
80 PR INT "FACTORIAL" ;Jx; "=";FACT

It is important to note that whilst the Orie always takes 0 as FALSE, and in
evaluating a conditional statement, takes -1 as TRUE, it will accept any
non-zero number as TRUE when testing numeric variables.

5 REPEAT
10 INPUT A
20 IF A THEN PRINT"A IS NOT ~ERO''ELSE P

RINT "A=0,WHICH IS FALSE"
30 UNTIL A=FALSE

Characters and strings may be compared in conditional tests, and we often
need to compare strings to find out if they are equal. Simple comparison of
strings to search lists or test input poses little problem since equality is the
only thing to be tested:

10 PR I NT" IS YOUR NAME FRED''
20 INPUT"ANSWER YES OR NO" ;A$
30 IF A$="1ES" THEN PRINT "HI,FRED2"
40 IF A$="NO" THEN PRINT ''COULON' T IOU

LIE A L.ITTLE 7"
50 PRINT "WELL,WHOEUER IOU ARE,WHAT'S T

HE PASSWORD?"
60 INPUT PASS$
70 IF PASS$0"FX123''THEN PRINT ''YOU'RE

AN l MPOS TOR" : END
80 PRINT "AUE FRATER"

However, care must be taken when comparisons are being made between
strings for ordering purposes. Comparison between strings is performed by
looking at each ASCII character code in turn, and whereas in comparison a
single character difference just tells us what we need to know, in sorting
alphabetically we have the problem of upper and lower case letters, and

Loops beyond compare 41

possibly numbers as well. First consider a simple sorting program to put
numbers into ascending order. Each item in a list (stored in the array NUM)
is compared with each other item in the list, and swapped with any higher
number it meets. Repeating this process for each number in the list results
in the desired ordering. Note the use of the variable TEMP to transfer array
elements:

5 REM*NUMERIC BUBBLE SORT**
10 CLS:LET J=15 'Number of items
20 DIM NUMCJJ'ATray foT numbeTs
30 'Example numbers generated here"
40 FOR K=0 TO J
50 LET NUMCKJ=RNDC1J*1000
60 PRINT NUMCKJ
70 NEXT K

99 '
100 REM*SORT*ROUTINE*
101 '
110 FOR M=l TO CJ-lJ
120 FOR N=M TO J
125 REM If correct ordeT

already,then skip
130 IF NUMCMJ<NUMCNJ THEN 170
135 REM Incorrect order,so swap
140 TEMP=NUMCMJ
150 NUMCMJ=NUMCNJ
160 NUMCNJ=TEMP
170 NEXT N
180 NEXT M
189 '
190 REM**ENDSORT**
191 '
200 REM *Print sorted list*
210 CLS:PRINT ''SORTED LIST:"
220 FOR K::::JTO J
230 PRINT NUMCKJ
240 NEXT K

The next program is· a string version of the bubble sort given above. The
only difference is the use of a flag to prevent unnecessary comparisons being

42 Loops beyond compare

made when a pass has produced no swaps (elements in correct order). Key
this in as listed to demonstrate the ordering sequence that strings con
taining assorted types of characters produce, and then use the sort routine
in a program of your own (CAPS INPUT or DATA only!) to sort any alphabetic
lists:

5 REM **ALPHABET SORT**
10 CLS
15 'ln it io.l lse str Ing o.rro.y. Rep lo.ce wi

Lh 1NPUT rout I ne If des ired
20 A$C0J= 11 l 11

30 A$ClJ= 11 8 11

40 A$C2J= 11 0.b 11

50 A$C3J="Ab 11

60 A$(4J="zz"
.70 A$ (5) =II o.2 II
80 A$C6J="0 11

90 A$(7J="d 11

100 A$(8J="X 11

110 A$(9J="A2"
120 A$(10J="bwert"
125 '
130 REM **PRINT LIST**
140 FOR K=0 TO 10
150 : PRJNT A$CKJ; ., II;
160 NEXT
165 '
170 REM**SOR U*
180 FOR K=0 TO 9 'items-1
190 : ~LAG=FALSE

200 : FOR M=K TO 10
210 : IF A$CKJ<A$CMJ THEN 260
220 : TEMP$=A$CMJ
230 ; A$(MJ=A$CKJ
240 : A$CKJ=TEMP$
250 : LET FLAG=TRUE
260 : NEX T M
270 : IF NOT FLAG THEN K=99
280 NEXT K

285 '
290 REM**PRINT SORTED LIST**
300 PRINT:PRINT
310 FOR K=0 TO 10
320 PRINT A$CK)
330 NEXT
340 END

Loops beyond compare 43

REPEAT ... UNTIL and FOR .. . NEXT loops may also be nested. Note the use of
indents (which need colons at the beginning of the line to stop the Orie
stripping off leading spaces) to help make the loop structure of the program
clear.

10 REM Indented Loops
20 PRINT "ORIC LOOPS"
30 FOR F=l TO 3
40 PRINT TABC15+F);"FOR-NEXT"F
50 PRINT TABC15+F);"NOW REPEAT"
60 C=l'~ets counter
70 REPEAT
80 PRINT TABC15+F+C)"REPEAT "C
90 C=C+l
100 UNTIL C>2
110 PRINT TABC15+FJ"OUT OF REPEAT"
120 PRINTTABC15+FJ"NOW NEXT F" ·
130 NEXT

There is an important programming point to note with regard to both
REPEAT .. . UNTIL and FOR ... NEXT loops. They must only be exited cor
rectly, by satisfying the exit condition. Jumping out of a loop with a GOTO

will leave the address of the loop on the stack, and if you do it repeatedly, the
stack will fill up and you'll get an ?OUT OF MEMORY ERROR. FOR ... NEXT loops
can be exited by setting the loop variable to a value that will satisfy the exit
test:

5 PRINT "ENTER DATA, ENTER -999 TO END"
10 DIM AC20J :DIM OC20J
20 FOR F=l TO 20
30 INPUT ACFJ
40 IF ACFJ=-999 THEN ACFJ=0:F=21:GOTO 60

44 Loops beyond compare

50 LET DCFJ=ACFJ*31
60 NEXT F
70 PRINT"DATA INPUT ENDED"
The entry of the dummy or sentinel value which terminates data entry
satisfies the condition at line 40, which resets the array element to 0, sets F
to 21 and then passes control to line 60. Since Fis greaterthan 20, the loop is
terminated. Such a use of the GOTO instruction, passing control forward in a
program to bypass blocks of program lines is held by the purist (and, some
would say, authoritarian, if not neo-fascist) programming gUrus to be the
only time use of GOTO is to be condoned. The middle path is advised for our
readers.

REPEAT loops may be similarly terminated by the use of flags, originally
set to TRUE or FALSE prior to the loop, and inverted when an exit condition is
met. A GOTO may also be required if code is to be bypassed. There is,
however, another option open for the programmer, although it is again of
dubious virtue in the eyes of some structured programming fanatics. This is
to use PULL, which takes the top address off the stack, and enables a GOTO

jump out of a loop to be coded with immunity, if not satisfaction, since it
must be admitted even by the most liberal of us that it's habitual use is not
good practice.

10 REM *** PULL ***
20 A=9
30 REPEAT
40 B=A
50 REPEAT
60 PRINTS;
70 B=B·-1
80 IF B<0 THEN PULL :GOTO 100
90 UNTIL 8=0
100 A=A-1
110 PRINT
120 UNTIL A=-5
Conditional tests can involve more than one condition, combined (using the
logical operators AND, OR and NOT). We can, for example, have a line which
reads: .

IF N<l0 AND A=B THEN ...

The Orie will check the two conditions separately, andthen check whether
the combination of the two is true, according to the truth tables for AND, OR

and NOT. AND works much as in English, in that IF condition 1 is TRUE AND

condition 2 is TRUE THEN the combination of the conditions is also TRUE. If

Loops beyond compare 45

either condition is FALSE, the combination is FALSE. The following program
produces the truth table for AND.

10 LET LC 1 J=TRLJE
20 LET LC2J=FALSE
30 LET L$C1J="TRLJE"
40 LET L$C2J="FALSE"
50 FOR K=l TO 2
60 FOR H=l TO 2
70 PRINT L$CKJ" AND
80 IF LCKJ AND LCHJ

L$ClJ ELSE PRINT
90 PRINT
100 : NEXT H
110 NEXT K

"L$CHJ "=";
THEN PRINT
L$C2J

Again, the program has been laid out so that structure is clear. Since the
Orie uses numeric values for TRUE and FALSE, we can utilise these in
numeric expressions. The modified line 80 in the program below uses the
value (- I or 0) that the Orie derives from the AND expression, plus 2, to
give the appropriate array subscript (I or 2) for L$.

10 LET LC 1 J =TRUE
20 LET LC2J=FALSE
30 LET L$ClJ="TRLJE"
40 LET L$C2J="FALSE"
50 FOR K=l TO 2
60 ~OR H=l TO 2
70 PRINT L$CKJ" AND "L$CHJ"=";
80 PRINT L$(2+CLCKJAND LCHJJJ
90 PRINT
100 : NEXT H
110 NEXT K
Take care with the complex brackets. The best way to check that you
haven't left one out somewhere is to count left and right brackets across the
expression, and check that there are the same number of each.

An expression using OR returns a value of TRUE if either of the conditions
it joins is TRUE, and likewise if both are TRUE. Only if both are FALSE does it
produce a FALSE result. NOT placed before a condition reverses TRUE and
FALSE values.

Multiple conditions can be combined, using both OR and AND. Here's an
example:

46 Loops beyond compare

10 LC 1 J=TRUE
20 LC2J=FALSE
30 L$ClJ="TRUE"
40 L$(2)="FALSE"
50 FOR K=l TO 2
60 FOR H=l TO 2
70 FOR J=l TO 2
80 PRINT L$CKJ" AND "L$CHJ" OR "L$CJJ"

IS " ;
90 PRINT L$C2+CLCKJ AND LCHJ OR LCJJ)J
100 PRINT
110 NEXT:NEXT:NEXT

As contrast to the earlier programs, notice how much more difficult it is to
read this program, in the absence of LETS, indents and loop variable names.
Even this is better than the sort of code often seen, which is written as
compactly as possible. Here's the same program in condensed form:

10 LC1J=TRUE:LC2J=FALSE:L$Cl)="TRUE" :L$
C2J="FALSE" :FOR K=l TO 2
20 FOR H=l TO 2:FOR J=l TO 2:PRINT L$CK

)"AND "L$CHJ" OR "L$CJJ'' IS";
30 PRINT L$C2+CLCKJ AND LCH) OR LCJJ)J:

PRINT:NEXT:NEXT:NEXT
Brackets can be used with multiple conditional expressions to ensure that
the meaning you intend is understood by the Orie. Try bracketing the first
two expressions, and then the second and third, running the program each
time to see the different interpretation this gives.

The use of conditional GOTOs can be enhanced using an ON .. . GOTO
statement. ON is followed by a variable or expression, which gives an integer
value, defining which of the line numbers following the GOTO statement is
activated:

10 l NPUT" ENTER 1 .. 2 OR 3_, PLEASE' ' ;N
20 ON N GOTO 150,200,300
140 RP1
159 PRINT "LINE 150 FROM N=J";GClTO 10
190 REM
200 PRINT "LINE 200 FROM N=2":GOTO 10
290 REM
300 PRINT "LINE 300 FROM N=3" :GOTO 10

Loops beyond compare 47

ON may also be used with the last program structure we are going to
introduce, the GOSUB ... RETURN format. The GOSUB (line number) instruc
tion acts like a GOTO, in that it transfers the program control to the specified
line number. However, unlike GOTO, the GOSUB instruction stores the
current address before jumping. The address is placed on the stack and,
upon encountering a RETURN statement, program control is RETURNed to
the statement following the GOSUB call. The program below illustrates the
principles:

10 REM *** GOSUB ***
20 CLS:REM GET NUMS'B<
30 UP=9:LO=l :GOSUB 1000
40 REM CALL MENU ROUTJNE
50 X=A:GOSUB 2000
60 REM ARE YOU BORED
.70 GOSUB 3000
80 IF BO THEN STOP ELSE GOTO 20
90 END
1000 REM NUMBER INPUT ROUTINE
1010 PRJNT"TYPE JN AN INTEGER BETWEEN";

LO; "AND" ;UP :PRINT
1020 REPEAT
1030 PR1NTCHR$C11J;:JNPLJT A$
1040 A=UALCA$J
1050 UNTIL A>=LO AND A=<UP AND A=JNTCAJ
1060 RETURN
2000 REM MENU ~ OPTION ROUTINES
2010 PRJ NT :PRINT SPC C16J; CHR$ C 129); '"***

MENU**~"
2020 PR1NT:PRJNTCHRH130J;"PRESS FDR

F()CTORJALC" ;X;"J"
2030 PR1NT:PRJNTCHRlfCl30J;''PRESS 2 FOR

" ; >< ; ., SQUARED"
2040 REM USE NUMBER ROUTINE TO SELECT
2050 UP=2: LO= l : GOSUB 1000
2060 ON A GOSUB 2100,2200
2070 RETURN
2100 REM CALCULATE FACTOR JAL Bl REPEATE

D ADD IT 1 ON

48 Loops beyond compare

2110 Y=X:S=l :GOSUB 2500
2120 PRJNT 11 FACTORJAL 11 ;x; 11 JS 11 ;s
2130 RETURN
2200 REM CALCULATE SQUARE
2210 PRJNT "SQUARE OF ";X; I .I JS II ;X;t:X
2220 RETURN
2500 REM RECURSlUE SUBROUTlNE
2510 1F 1=0 THEN RETURN
2520 s=s:n: 1=1-1
2530 GOSUB 2500
2540 RETURN
3000 REM ARE IOU BORED
3010 PR1NT "ARE IOU BORED Cl/NJ?"
3020 1F KEY$="!" THEN BO=TRUE: GOTO 305

0 ELSE WAJT 1

0
3030 1F KEl$="N 11 THEN BO=FALSE:GOTO 305

3040 GOTO 3020
3050 RETURN

While we are on the subject of subroutines, perhaps we should take a look at
why good programmers are so keen on using them. Well, firstly there are
the obvious advantages of saving space by keeping what would otherwise be
oft-repeated program segments in one place. This can also save pro
gramming time since you don't have to continually retype the same lines at
each desired occurence. OK, so we've seen the obvious gains to be made in
terms of time and space, let's progress to the subtler, more profound
advantages to be gained, in terms of philosophy and aesthetics, from using
subroutines.

Many people are, in fact, so enamoured of these methods that they almost
always emphasise the more intellectual aspects of structured programming,
usually at great cost to the clarity of their arguments. Pragmatically,
though, it is worth trying to 'structure' your thoughts, at least, and think of
the task to be performed in terms of smaller, simpler subtasks. This way of
thinking allows you to write short sections of code which are free of
confusion and complete in their own right, although of course 'no sub
routine is an island'.

When you come back to a program some time after its inception it can be
very awkward to track down the exact line in which something happens
if the programming task was originally conceived as an amorphous,
interminable and interleaved mass. Getting back to practicalities, it doesn't

Loops beyond compare 49

really matter whether you make these subsections of code into fully fledged
subroutines or not. In fact, it is arguably better not to do so if they are only
used once in the whole program. Really all that can be said about the merits
or otherwise of structured programming is that you should have a clear idea
of what you are doing at each stage in your program and keep unrelated
tasks in different lines so that you can figure it out later. Keeping your
sections or modules well separated and clearly marked with REM statements
will help you develop into a less frustrated programmer.

5 Down memory lane

One of the great virtues of BASIC is that it allows us to state what we wish to
be done and, providing we put the right instructions into a program, we
don't have to worry about how it's done. However, there are instructions in
BASIC which allow us to interact directly with the Oric's memory. We first
need to know what's in the memory and how it's arranged before we can do
anything with it, so here goes.

You first need to know something of the binary number system. This
uses sequences of 0's and l's to represent numbers in a computer's memory.
Each memory location can be thought of as a bank of eight switches, which
may be on (set), representing a 1, or off (unset), representing 0. Each
location thus holds a sequence of eight Binary digITS or bits, and the eight
together make up a byte. Within a byte the bits are numbered 0 to 7 right to
left, and each bit, when set, holds a value twice that of the one to the right of
it. Bit 0 can be either 0 or 1, and represents those values, whereas bit 1
represents 2 if set, and zero if unset. The value held in the sequence of eight
bits is the sum of the numbers represented by the set bits. The largest value
that can be held in a sequence of eight bits is 255, and the smallest, of
course, is zero:

Bit 7 6 5 4 3 2 1 0
Binary 1 1 1 1 1 1 1 1
Value 128 64 32 16 8 4 2 1 = 25 5 decimal

The binary number 01101101, for example, would be:

Bit 7 6 5 4 3 2 1 0
Binary 0 1 1 0 1 1 0 1
Value 0 +64 +32 +0 +8 +4 +0 +l = 109 decimal

The binary system works in powers of two (not powers of 10, as our usual
decimal system does). This can be illustrated by the following program.

10 REM Powers of 2
20 FOR POWER=0 TO 7
30 PRJNT "2 to the power" ;POWER;"=" ;2"P

OWER
40 NEXT POWER

Down memory lane 51

Here's a program that converts binary to decimal, and vice versa:

10 REM Bindry/Oecimdl conversion

15 '********************
16 ' MAIN PROGRAM
17 '********************
20 PRINT"PRESS B FOR BINARY TO DECIMAL"
30 PRINT "PRESS D FOR DECIMAL TO BINARY

"
40 GET M$:1F M$0"D" AND M$0"B" THEN 4

0
50 IF M$="D"THEN GOSUB 500 ELSE GOSUB

000
60 PRINT "ANOTHER NUMBER ? CY/NJ
70 GET M$:IF M$="Y"THEN CLS:GOT020 ELSE
END
80 '********************
85 '***END MAIN*********
90 '********************
490 ,
500 '************************
501 ' DECIMAL TO BINARY
502 , SUBROUTINE
503 '*************************
504 ,
510 CLS:lNPUT"ENTER A DECIMAL NUMBER";N

520 PRINT:PRINT Nx;:B$=""
530 REPEAT
540 :I=INTCNX/2)
550 BIT=NX-2*I
560 IF BIT=0 THEN B$="0"+8$ELSE

B$="1"+B$
570 Nx=I
580 UNTIL Nx=0
590 PRINT "IS "8$" IN BINARY"
600 RETURN
610 ,
620 '*******ENDSUB***********

52 Down memory lane

630 '
1000 '************************
1001 ' BINARY TO DECIMAL
1002 ' SUBROUTINE
1003 '************************
1004 '
1010 CLS:INPUT"ENTER A BINARY SEQUENCE"

;B$
1020 N=0:P=0
1030 FOR J=LENCB$JTO 1 STEP-1
1040 BIT$=MJO$CB$,LENCB$J-P,1J
1050 N=N+UALCB1T$J*2AP
1060 P=P+l
1070 NEXT J
1080 PRINT B$" =OECIMAL"N
1090 RETURN
1100 '
1110 '*******ENDSUB***********

Notice that the program is structured with a main program module, from
which the appropriate subroutine is called according to the user input after
the menu has been presented. The program also shows how a listing can be
made more readable by the inclusion of REM statements to break up the
program into its modules, and the use of indents within loops. The decimal
to binary routine uses a REPEAT ... UNTIL loop to reduce the number by a
power of two each time through the loop, assigning a 0 or 1 to the binary
string B$ according to whether a remainder is present or not after division by
two. The loop terminates when N%=0 and there's no more number to
work with. The binary to decimal routine uses a FOR ... NEXT loop to check
each bit of the binary string in turn from the right, increasing the power of
two (P) by which the VALue of the bit is multiplied at each pass through the
loop.

The organisation of the Oric's memory is shown diagrammatically in
Appendix 5. The 48k and 16K versions have the same arrangement of
memory, apart from a missing chunk in the middle of the 16K memory,
between #4000 and #C000 hex (16384 and 49152 decimal). Referring to
this diagram, and using your trusty Orie to convert hexadecimal (PRINT
#4000, etc.), you'll see that the top 16384 locations, above #C000, are
Read Only Memory (ROM) on both the 16K and the 48K machines. This is
where the BASIC interpreter and arithmetic routines are held in permanent
fixed memory stored in the ROM chips of the Orie.

Down memory lane 53

The ROM memory cannot be altered (written to), although, as its name
implies, it can be read from so that we can find out what it contains. The
contents of this area of memory are machine-code instructions and data, and
the process of understanding the contents of memory when read out (called
disassembly, in contrast to assembly, which you can investigate in Chapter
10) is a complex one.

The rest of the Oric's memory consists of Random Access Memory,
which can be both written to and read from, so that we can insert into any
location a number between 0 and 255, and also discover the value contained
in any location. The number stored in a location can represent part of a
number, a BASIC keyword, a character code, or part of an address. If you're
programming in machine code, it may also be a machine-code instruction.
The interpreter stored in ROM decides what any specific number represents
according to context and placement in memory.

Starting from the bottom of RAM we have five pages of memory, each of
256 locations, dedicated to specific purposes. The first page (Page Zero)
contains information on the current state of affairs within the Orie needed
by the 6502 Central Processing Unit (CPU) chip, such as the addresses of
the start and end of the BASIC program, pointers to string variable storage,
and soon.

Page 1 is a stack for the use of the arithmetic routines, storing numbers
and intermediate values involved in the current calculations.

Page 2 stores run-time or system variables which hold values needed to
keep track of the operation of BASIC such as cursor positions, CAPS/lower
case, keyclick on/off, etc.

Page 3 is dealt with in Chapter 11 since it holds the address for
Input/Output between the Orie and the external world and the addresses
for transfer of data between the various dedicated chips of the Orie (see the
diagram in Appendix 11).

Page 4 addresses between #0400 and #0420 are available for the user's
machine-code programs, and the rest of the page is reserved for system use.

Addresses #0500 upwards are the memory locations for storage of your
BASIC programs and variable values. We'll look at how this section of
memory is organised below. The BASIC program grows upwards as it
lengthens, taking with it the variables area which sits on top.

Locations above #9800(#1800 for the 16K Orie) store the character sets
and the screen display. The TEXT screen (which is the one that appears
when we switch on and is the one which we've been using) takes much less
space than the HIRES (high resolution) screen. The different screen modes
will be dealt with in Chapter 7, where we approach the whole question of
graphics and screen displays. However, we'd better say here that, to enable
switching between the two modes, the whole area above #9800 (#1800 on
the 16K) is reserved. If only TEXT output is required on screen in the course
of a program the GRAB command can be used to release the area from #9800

54 Down memory lane

to #B400(#1800to #3400on the 16K) for use by BASIC. This is reversed by
the RELEASE command when the HIRES screen is required once again. The
standard and alternate (LORES 1) character sets are stored in two sequences
of memory locations, one of 1024 bytes, storing the 128 characters for the
standard character set, and one of 896 bytes, holding the 112 characters of
the alternate set. Each character is stored as a sequence of 8 bytes, which
give the bit pattern defining the pattern of dots displayed on the screen.
Chapter 7 explains how this works. All characters are stored, although the
non-PRINTing ones have a null number stored in their character definition
bytes, just to make sure that they don't PRINT.

Characters stored in this area may be redefined by the user to form any
special characters required in a program. This is accomplished by writing
different values into the addresses in memory which form a specific
character. The screen memory is also covered in Chapter 7: Above the
screen memory storage is an area of spare memory available for machine
code or Input/Output use.

The BASIC instruction to read the contents of a byte is PEEK. The format is
PEEK(addr.), where addr. is a hexadecimal or decimal number specifying the
address. PEEK returns the value stored in the byte as a decimal number.
PRINT PEEK(1280), for example, will PRINT the value contained in the byte at
memory location 1280. Precisely the same result is obtained by PRINT PEEK
(#500).

POKE writes data to a byte of memory. POKE addr., i puts the value of i (0 to
255) into the byte at the memory location specified by addr. POKE 1600, 134

puts the value 134 into location 1600. The values may both be specified in
hexadecimal notation: POKE #640,#56.

Integer values up to 65535 can be stored in two bytes, and the Orie uses
this system for address locations which need to be stored in memory. The
two bytes hold the value in the form (value offirst byte) plus (256* value of
second byte). There are instructions in BASIC for reading and writing such
values directly, without calculation. These are DEEK(addr.) which returns the
value stored in addr. and addr. + 1, and DOKE addr.,i which places the integer
value i (0 to 65535) into the byte specified by addr. and the following byte.

Using these instructions, we can take a look at how a BASIC program is
stored in the Orie memory. The program below will · PRINT the memory
address, the PEEKed value contained in the byte specified by that address,
and the character corresponding to that value if the character is PRINTable.
Line 40 merely breaks up the data into pages that will fit on the screen. Line
60 right justifies the number contained in the byte using SPC.

10 REM PROGRAM STORAGE
20 LET MEM=#500
30 CLS:FOR K=lT0200

Down memory lane 55

40 IF INTCK/25J=K/25 THEN PRJNT"PRESS K
EY FOR MORE" :GET A$

50 N=K+MEM:M=PEEKCNJ :L=LENCSTR$CMJJ
60 PRJNT N;SPCC10-LJ;M;
70 IF M<l29 AND M>32 THEN PRJNT SPCC4J;
CHR$CMJ ELSE PRJNT" "
80 NEXT K

The display for the first three screens produced is as follows:

1281 23
1282 5
1283 10
1284 0
1285 157
1286 32
1287 80 p

1288 82 R
1289 79 0
1290 71 G
1291 82 R
1292 65 A
1293 77 M
1294 32
1295 83 s
1296 84 T
129.7 .79 0
1298 82 R
1299 65 A
1300 71 G
1301 69 E
1302 0
1303 38 &
1304 5

PRESS KEY FOR MORE
1305 20

56 Down memory lane

1306 0
1307 150
1308 32
1309 77 M
1310 69 E
1311 77 M
1312 212
1313 35 #
1314 53 5
1315 48 0
1316 48 0
1317 0
1318 54 6
1319 5
1320 30
1321 0
1322 148
1323 58
1324 141
1325 32
1326 75 K
1327 212
1328 49
1329 195

PRESS KEY FOR MORE
1330 50 2
1331 48 0
1332 48 0
1333 0
1334 102
1335 5
1336 40 (

1337 0
1338 153
1339 32
1340 215
1341 40 (

1342 75 K

Down memory lane 57

1343 20?
1344 50 2
1345 53 5
1346 41 J
134? 212
1348 ?5 K
1349 20?
1350 50 2
1351 53 5
1352 32
1353 201
1354 32

You might find this a little confusing, but all will be made clear! The first
address PEEKed is #501 (decimal 1281), following the zero stored in address
1280, marking the start of the BASIC program area. The value stored in
locations 1281 and 1282 is a pointer to the memory address containing the
start of the next program line. If you enter the command PRINT DEEK(l281) as
a direct command with this program in memory, you will get 1303 on
screen. Looking at this location, you will see that it follows a zero in address
1302 which is used by the Orie to separate program lines. Bytes 1303 and
1304 are the first two bytes of line 20, forming the pointer to line 30. All the
program lines are linked by these pointers, and the Orie can 'skip' along the
program lines to find the line specified by a GOTO or GOSUB statement with
maximum efficiency.

Addresses 1283 and 1284 hold a two-byte value in the same format (byte l
+ 256*byte2) which gives the line number, in this case 10. Location 1285
holds the value l 57, which is the tokenised form of REM. The Orie stores
each BASIC keyword it recognises when the program line is placed in
memory in a form that only occupies a single byte of memory. Appendix 12
gives a list of BASIC keywords and their token values.

After the tokenised REM we find a space (character code 32) followed by
the character codes for PROGRAM, then a space, then MEMORY. The zero
terminates the line. Addresses 1303 and 1304 store the pointer to the next
line, and 1305/6 the line number. Although the & character is displayed, the
value stored in the byte is a numeric value, not a character code, which is
clear (to the Orie) from the context. Reference to Appendix 12 will tell you
that the value of 150 stored at location 1307 is the token for LET. This is
followed by the variable MEM in the next three locations. Address 1312
holds 212, the token for the equality operator, i.e. the equals sign·=· when
stored as the arithmetic function. The Orie converts the character into the
operator for insertion into memory, and then converts back to the character

58 Down memory lane

form when a program is LISTed, just as it does with BASIC keywords. The
tokens for the arithmetic operators are:

212 Equality
+ 204 Addition

205 Subtraction

* 206 Multiplication
I 207 Division

i 208 Exponentiation

Addresses 1313 to 1316 store #500, followed by the zero signifying the end
of the line.

We'll leave it to you to work through the rest of the listing. If you want to
find out the keyword corresponding to a particular value, you can use POKE:

10 REM
20 INPUT"ENTER TOKEN UALUE" ;Nx
30 POKE 1285,Nx
40 LIST

Address 1285, which is occupied by the token for REM, is POKEd with the
INPUT value. When line 40 LISTS the program, the Orie will convert the
POKEd value into the PRINTed form. A further illustration of the value of
POKE is the simplicity with which we can change the PRINT instructions of
lines 40, 60 and 70 of the memory display program into LPRINT instruc
tions. This was how the listing of memory contents above was produced.
The extra lines 90-140 added to the program, as given below, will check
through the memory locations storing the program, replacing each occur
ence of a PRINT token (value 186) with a LPRINT token (143). The
REPEAT .. . UNTIL loop terminates when the next two locations are both
zero, which is the marker for the end of the BASIC program, using DEEK.

90 REM CHANGE PRINT TO LPRINT
100 M=#500:C=0
110 REPEAT
12.0 M=M+ 1
130 IF PEEKCMJ=186 THEN POKE M,143
140 UNTIL DEEKCM+ll=0

As another example of DEEK and DOKE, here's a simple renumbering
program, which will renumber lines in given steps, starting at a specified
line. It does not renumber the destination line numbers of GOTO and GOSUB
destinations. This is not too difficult to do, but requires more than one pass
through the memory area.

Down memory lane 59

10 REM**RENUMBER**
11 ' Pro 9 r o.m st o. rt s l i n e 60000.
12 'Does NOT renumber GOTO or GOSUB
13 'Destino.tions.Note these BEFORE
14 'Renumbering o. progro.m
60000 MEM=t1501 'First l in e po inter
60010 INPUT"Who.t exist in9 line to sto.rt
renumber" ;BEGIN
60020 lNPUT"Cho.nge this to line number''

;NLJN
60030 INPUT" Increment lines in steps of

";INC
60040 REPEAT
60050 LlNE=DEEKCMEM+2J:' Current l; ne nu

mber
60060 IF LINE <BEGIN THEN 60080
60070 DOKECMEM+2J,NLJN:NLIN=NLIN+INC '1

rise rt new line number o.nd increment
60080 MEM=DEEKCMEMJ 'Get sto.rt next l in

e
60090 UNTIL DEEKCMEM+2J=60000'0o not re

number RENUMBER routine

Above the BASIC program are stored the variables used within the program
and their values. This is the area which is reset when CLEAR is used. The
variable names are stored in two bytes (the two characters of a variable name
that the Orie recognises), with the type of variable identified by the
modification of the ASCII code of the characters of the name. Real numeric
variables are stored as unmodified character codes, integer variables have
128 added to each character code, and string variables have 128 added to the
second character only. Single character names have zero (+ 128 if string or
integer) stored in the second byte. The order in which simple variables are
used in a program is determined by the sequence in which they are assigned
in the program, and arrays are stored after the simple variables in the order
in which they are DIMensioned.

Following the name of numeric variables there are five bytes which, in
the case of real numeric variables, hold the number in a format where the
first byte holds an exponent, and the remaining four the mantissa. The
format is known as five-byte floating point format, which functions in
binary much as exponential notation does in decimal. Integer variables are

60 Down memory lane

stored in the first two bytes of the five, in standard two-byte form. The
other bytes hold 0. String variables are stored with five bytes following the
variable name. The first byte holds the length of the string, and the second
and third are a pointer to the address in memory where the string of
characters are held. This will be an address within the BASIC program listing
if the string variable holds a literal string defined within the program. If it is
a calculated string, or is redefined in the course of a program, the resultant
string is stored at the top of the variables area, immediately below the
character set areas, and the pointer will indicate this location. The length
value stored in the first byte after the string name indicates how many bytes
are to be read, starting at the address given by the pointer bytes. Two
unused bytes follow the pointer.

Arrays have the same types of names as simple variables, but these are
followed by a byte specifying the total number of bytes required to store the
array data (including the array name). Two bytes then hold the number of
dimensions in the array, followed by two bytes for each of the dimensions,
specifying the number of elements for each dimension. Numeric arrays
have five bytes for each element, stored in sequence, whereas integer arrays
have only two bytes in each element. Each string element in an array has a
length byte, and a two-byte pointer. You can access the start of the variables
area and display the contents to see how the data is stored with a program
similar to the one we used to probe the BASIC program storage. Set some
variables, find the start of the variables area with DEEK(#9C), and you can
start PEEKing. The two bytes at locations #9C and #90 are a system
variable holding the address of the start of variable storage. Similarly,
DEEK(#9E) will provide the end address of the variables area, and DEEK(#A2)
will give you the address of the bottom of the string variables area.

That concludes our trip along the byways of the Orie memory. If you
enjoyed the jaunt, you can POKE around some more with the aid of
Appendix 9. Our next chapter is concerned with putting the contents of
memory on to tape for safe storage, and freeing you from a continually
plugged-in Orie.

6 Tapes and
Data

As soon as you switch off your Oric's power supply any program held in
memory is lost. This is because the RAM memory which stores the current
program and variables is 'volatile' - i.e. when the machine is turned off, the
RAM memory and CPU registers are cleared, ready for a fresh start when you
next power up your Orie.

It is obviously impractical to type in a program each time you want to use
it (a fifty line program will take you the best part of an hour), and thus some
method of 'off-line' storage is clearly required. The cheapest and most
widely used means of storing a program is on cassette tape. Now, whilst
cassette storage is neither the fastest nor the most reliable medium for
preserving your programs, it is considerably less expensive than disc-based
systems, and your Orie ATMOS has a number of features which make
cassette handling more reliable and flexible than usual.

To save Orie programs on cassette you will require both a cassette
recorder and an appropriate lead to connect it to your computer. The choice
of recorder is important, but this isn't to suggest that it should cost you a
great deal of money. In fact it is preferable to use a cheap mono recorder (if
you wish to use an existing stereo machine, make sure that you only use a
single channel), and the dedicated data recorders available for around £35
from the high street chainstores are ideal for the task. Your life will be made
considerably easier if you choose a machine with a tape-counter, because
you can waste a great deal of time searching around for programs if you have
no means of establishing exactly where they are on a tape.

Try to stick with the same recorder as far as possible, since you may run
into problems when you try to load programs that were saved on another
machine. (Slight differences in the alignment of playback heads can make a
well-recorded cassette unusable when it is replayed on a different machine.)

The type oflead you require depends on the kind of cassette recorder you
decide to use. The Orie itself needs a 3 or 7-pin DIN plug which fits into the
cassette socket at the back of the machine. A 3-pin DIN to 3-pin DIN lead is
supplied, The majority of data recorders use a single DIN socket which
serves for both recording and playback, and the plug you'll need under
these circumstances is exactly the same as for the Orie end of the connec
tion. However, some mono cassette players have only an EAR and MIC

socket, which makes matters slightly more complicated. In this case you'll

62 Tapes and Data

need separate jack-plugs for input and output (i.e. for playback and record),
and it is wise to mark the individual plugs clearly so that you don't get them
mixed up. The various types of lead are usually available from computer
stores, but if you run into difficulties your local hi-fi shop can often be
persuaded to make up a lead for you.

It is far better to use short-length computer tapes (CI0s or CISs) from a
reputable manufacturer than full-length C-90s or C-60s. Apart from the fact
that it takes too long to locate a program on a C-90 (tape-counter or not), the
longer (and thinner) tapes tend to stretch much more easily than short
computer tapes, and are thus more likely to corrupt your recording.

The Orie has two main commands related to cassette handling: CSA VE and
CLOAD. We'll first take a look at the formats and facilities that are available
using these commands, before going on to discuss the other available tape
file facilities of your ATMOS.

Once you have loaded your new cassette into your recorder, it's worth
running it fast forward to the end, and then rewinding, to ensure that the
tape is evenly and tightly wound. Most cassettes have a short plastic header
that you can't record on. Make sure before you start recording your
program that you have wound the tape past this header. In fact it is worth
letting the tape run on for 15 seconds or so, since the majority ofcorrupted
recordings result from damage to the relatively exposed beginning of the
cassette, or stretching in the initial few inches of tape. Set your tape counter
to zero and you're ready to go.

To save a program on to tape, follow the sequence below:

1 Check that the cassette player is plugged in.
2 Ensure that it is correctly connected to your Orie. The Orie end of the

connection must be plugged into the cassette port DIN socket, and the other
end should be plugged into the recorder's input/output socket ifyou are
using a recorder with a DIN socket or the MIC jack-plug should be in the MIC
socket if you are using a lead fitted with jack-plugs. (In the latter case, the
EAR plug should be left unconnected to prevent possible feedback loops.)

3 Check that you have a fresh cassette in the recorder and that you 'have
wound the tape well pasnhe plastic header.

4 LIST the program that you warit to CSA VE on the screen.
S Key-in as a direct command:

CSA VE"FILENAME" ,S

where "FILENAME" is the name of the program you wish to save. The name
can be up to 16 characters long, but it is best to keep the name as short,
relevant and easy to remember as possible. Any characters may be used.

You'll notice that in the above format the filename in double quotes is
followed by a comma and an s. The s stands for Slow, and is an optional part
of the format. The Orie CSAVEs and CLOADs at two different data transfer

Tapes and Data 63

rates. Without the ,s the Orie automatically assumes 2400 baud Fast mode,
but if you add ,s the Slow mode is enabled (300 baud). A baud is a transfer
measurement of bits per second of data. Whilst both formats are reliable,
you should always take the precaution of making at least one copy of any
valuable program in the extra safe Slow mode. Let's continue with our
CSAVEing sequence:

6 Press the RECORD and PLAY buttons on your cassette recorder.
7 Press RETURN on the Orie. The message SAVING FILENAME will appear at

the top of the screen, followed by the file type B for BASIC program. When
the program has been CSAVEd, the usual READY message will appear at the
current cursor position. Stop the recorder.

If you have carefully followed the above steps, you should now have a copy
of your program on cassette. In order to be certain that the program has
CSAVEd correctly without having to actually reload it into the Orie, you have
the capacity to VERIFY a recording to ensure that the program has been
correctly CSAVEd, but more about that later. For now, let's deal with
loading.

When you want to load from tape any program you have CSAVEd, the
following sequence should be followed:

I Check that the casette recorder is plugged in, that its volume is set at
around the halfway point, and that the tone control is set to high.

2 Ensure that the recorder is correctly connected to the Orie. The
computer's DIN plug connection will be the same as it was when you CSAVEd
the program. If you are using the supplied lead or a similar DIN-to-DIN lead,
it will be connected to the recorders' input/output socket. If you are using a
DIN-plug-to-jack-plug lead, the EAR jack-plug should be placed in the EAR
socket and the MIC jack disconnected.

3 Using your tape counter, locate the start position of the program you
wish to CLOAD.

4 Key in:

CLOAD"FILENAME" ,S

The filename must be precisely correct and must include any spaces that
were in the filename when the program was CSAVEd, or the Orie will not
recognise the program as the one you are trying to load. If you have
forgotten, or are unsure of the precise filename, you can use the format:

CLO AD"" ,S

and the Orie will CLO AD the first program it finds on the tape. Once again the
,s has been included in the instruction format, but must only be used if the
program was actually CSAVEd in the Slow mode.

5 Press the RETURN key on your Orie.

64 Tapes and Data

6 Press the PLAY button on your cassette recorder. The Orie will search
through the cassette until it finds the program "filename" and while it does
so the message SEARCHING ... appears at the top of the screen. When the
program has been found the message will change to LOADING FILENAME
(followed by the file type specifier B) until the CLOADing process is complete
and the READY message appears. If there is a fault on the tape you may well
get an ERRORS FOUND message appearing on the screen after the load
finishes. If this happens don't immediately despair. It could be that the
volume control on your recorder is set too high or too low, or that the tone is
set at the wrong level. Before giving up hope, spend some time making
small adjustments to the controls on your cassette player. If you can get the
program to CLOAD after these adjustments it wouid be wise to make another
copy of the program immediately, just to be on the safe side.

You have now learnt all that you need to know about the straightforward
use of the CSA VE and CLOAD commands on the Orie. Now we'll take a look at
the other cassette facilities available on the machine. Ifyou want a program
to RUN automatically as soon as it is loaded, you must add the following
dimension to your CSA VE command:

CSA VE"FILENAME" ,AUTO,S

Once again, the ,s should only be included if you wish toCSAVE the program
in the Slow mode. CSAVEd in the above format, the program will RUN as soon
as the CLOADing process has been satisfactorily completed. AUTO saved
programs do not require any change in the CLOAD format.

As well ·as complete programs, it is also possible to store blocks of
memory on cassette. This is particularly useful if you want to CSA VE a screen
display. · However, if you use this method to save screen displays, you must
ensure that the Orie is in the correct mode for the display in question. To
store any block of memory it is necessary to know the Address at which the
block starts, and where it Ends. With this information to hand, the memory
blocks can be CSA VEd with the following format:

CSAVE"MEMBLOC" ,A#400,E#420,S

This would CSAVE (in Slow mode) the contents of RAM from locations #400
to #420. You can use this facility to CSAVE and CLOAD a memory area
storing a different character set or a machine-code routine. Because the rest
of the Oric's memory would be unaffected by this procedure, any BASIC
program in memory would be protected from the additional routines. The
areas of memory applicable to saving screens are as follows:

For the HIRES screen:

CSA VE"filename" ,A40960,E48000 (48K Orie)
CSAVE"filename" ,A8192,EIS232 (16K Orie)

Tapes and Data 65

For the TEXT and LORES screens:

CSA VE"filename" ,A48000,E49119 (48K Orie)
CSA VE"filename" ,Al5232,El635 l (16K Orie)

The start Address and End address will accept either decimal or hex
adecimal values, and again, ,s may be appended for a Slow saving rate.
When CLOADed, blocks of memory are automatically loaded back to their
original memory locations, so the normal CLOAD"FILENAME" is all that is
required. The file type specifier is C (for code) when saving or loading
memory blocks.

There are two other cassette facilities available. The most valuable of these
additional commands is the VERIFY facility. When you have CSAVEd a
program and wish to see whether or not the process has been successful the
following check can be mace:

1 Rewind the cassette back to the beginning of the program you have just
CSAVEd.

2 Check that the volume control on your recorder is set at the correct level
for CLOADing, and that the tone level is high.

3 Ensure that your lead connections are correct. The Oric's end of the
lead should remain in the same socket, the other end should be in the
cassette input/output socket if a DIN plug, or, if using jack-plugs, the EAR
jack should be in the EAR socket (with the MIC jack unconnected).

4 Key-in the following as a direct command:

CLOAD"FILEN AME", V ,S

(Once again the ,s should only be used if the program was CSAVEd in the
Slow mode.) The filename may be omitted if you're certain of the program's
position. The computer will begin SEARCHING . .. in the usual way, and
when it locates the program it will report VERIFYING FILENAME (plus the file
type identifier). If the recording has been successful, the message 0 Verify
errors detected will appear at the current cursor position. If the recording has
been unsuccessful (any number other than 0 for errors) you must return to
the operations outlined in step 6 of the CLOAD procedure given above, if a
second try doesn't work.

The other additional CLOAD command available on the Orie is the Join
facility. This enables you to Join a second program on to the end of a
program already typed or CLOADed into your Orie. The format for this
operation is as follows:

CLOAD"FILENAME" ,J ,S

All that this feature actually does is to prevent the Orie from clearing the
memory as it normally does when any CLOAD format is used, and insert the
new program lines sequentially into memory. If you wish to Join a second

66 Tapes and Data

program in this way, you must ensure that all the line numbers in the second
program are higher than the highest line number in the first. If this is not the
case the final product will fail to RUN, since the line numbers in the second
program do not 'interlace' with those in the first, and the second program is
merely inserted (above the existing program) into memory. The joined
programs must fit within the available memory capacity.

There is an additional tape file capability available. STORE and RECALL
allow arrays to be saved onto tape and read back into a program, thus
providing a means of passing data from one program to another. Within a
program, the contents of an array can be defined, and then placed as a
cassette file onto tape. Any type of array may be STOREd. The format for
STORE is:

STORE V,"FILENAME" ,S

where v is the name of the array to be stored (A$, for example, for an array
A$(3,4), G for an array G(30), etc.).

The procedure for using the instruction is the same as that for CSA VE, and
the fast save (2400 baud) will be used as default if the ,s is omitted. The
message SAVING FILENAME appears on the status line, followed by a letter
specifying the type of array: R for Real floating point number arrays. I for an
Integer array, and s for string arrays.

RECALL will load back from tape the contents of an array previously saved
on tape using STORE and the procedure is the same as when using CLOAD.
The array to store the RECALLed array must have been dimensioned prior to
using RECALL, or an OUT OF DATA error occurs. The array size must be the
same as (or greater than) the original array and of the same type (integer,
string or real). RECALL may be used within a program, or as a direct
command, but if the latter, no instructions which reset the variables stored
can be used (CLEAR, RUN, etc), or the stored array values will be lost.

The format for RECALL is:

RECALL V,"FILENAME",S

where vis the name of the array in which the RECALLed data is to be placed.
This does not have to be the same name as that of the original array which
was STOREd, but must be of the same type. Try the example programs
below to illustrate this. Note that whilst (in the RECALL example) the array B
was DIMensioned as B(20), the same size as the array A(20) used in STOREing, it
could be DIMensioned larger. Try changing line 10 in the program to read
DIM B(25l and RECALL the array again.

Slow (as in the format above, using ,s) or fast (omitting ,s) speed data
transmission from tape can be specified. The same speed must also have
been used by the STORE instruction.

10 DIM AC20J
20 FOR K=0 TO 20
30 LET ACKJ=2"K
40 NEXT K

Tapes and Data 67

50 PRINT"PRESS A KEY WHEN READY TO STOR
E"
60 GET A$
?0 STORE A,"ARRAYFILE"
80 PRINT"ARRAY NOW STORED"
90 END

10 DIM 8C20J
20 PRINT "SET RECORDER TO PLAY,PRESS

KEY TO":PRINT "RECALL ARRAY DATA"
30 GET A$
40 RECALL 8,"ARRAYFILE"
50 CLS
60 FOR L=0 TO 20
?0 PRINT BCLJ
80 NEXT L
90 END

Care of cassettes

A

If you've taken the trouble to develop a program and CSA VE it on cassette,
it's worth giving some thought to ensuring that your copy of the program
lasts for as long as possible. It should be stressed that if a tape is left unused
for as little as a month there is a danger that when you come to use it you will
find the copy has been corrupted. However, there are steps which can be
taken to minimise the risk:

Do not record on the first 10-15 seconds of a cassette. Most of the
problems of stretching and coating loss occur in this section of the cassette.

When a cassette is not in use always ensure that it is returned to its case.
Never leave a cassette on top of a TV set or any other electrical appliance.

The electromagnetic fields generated by such equipment may corrupt the
signals stored on the tape.

Never touch the tape surface, and always make a point offully rewinding
the cassette after use so that only the plastic header is exposed.

New tapes should always be run through and then rewound back to the
beginning before any recording is attempted. This will ensure an even
tension.

68 Tapes and Data

Make sure that you clean the record and playback heads of your cassette
recorder on a regular basis. This should really be done after every two or
three hours' running time. Invest in a head demagnetiser, and demagnetise
the heads of your recorder after every twelve hours'·or so running time.

Once you have recorded a program, make sure that the program filename
and its tape-counter reading is accurately documented on the cassette and
the cassette case. Ensure that you have noted which mode the cassette was
recorded in (i.e. Slow or Fast), and if the program is still under develop
ment, make it clear which version of the program has been recorded.

For the final version of any program, the cassette tabs at the top of the
tape should be removed to prevent accidental erasure.

Make back-up copies of any important programs.
Rewind tapes at intervals, even if you don't CLOAD any programs from

them. This helps prevent 'bleed through' of magnetisation from one section
of tape to adjacently spooled sections.

N.B.

Certain cassette recorders may cause the Orie to give a spurious ERRORS
FOUND message after CLOADing. Variation in the tape lead-in signal, due to
the 'hunting' of automatic level controls when recording, can cause the data
checks built in to the Orie to record an error. Despite the error message,
programs will load correctly, but AUTO-run will, as usual, be inhibited. The
machine code chapter contains a program which will solve this problem,
should you encounter it with your recorder.

7 Graphics
and colour

Right, by now we are sufficiently familiar with the simpler BASIC statements
to look at one of the more advanced topics on microcomputers:
GRAPHICS. Your Orie has particularly good colour and graphics capabili
ties for a micro-computer. In all there are four separate screen displays or
modes on the Orie. These modes are TEXT, LORES 0, LORES I and HIRES. In
this chapter we will examine each of these in turn.

TEXT mode

This is the mode your Orie goes into when you first turn it on and, as the
name implies, it is primarily intended for the display of text. How do we
display text? Well, we have already met the PRINT statement that PRINTS
characters or variables on to the screen but it's worthwhile taking a closer
look at the details of PRINTing. The simplest form of PRINT is shown in the
example below and if you type this in and then RUN it you will get the
following PRINTed on your screen:

t0 PRINT "FRED"

!='RED

Now add another line to get the following program which, when RUN, will
give the output shown below.

10 PRINT "FRED"
20 PRINT "A"

!="RED
A

It seems quite reasonable that the computer should use a new line to PRINT
the "A" and in general the computer will go immediately to the start of the
next line after performing a PRINT instruction. However, there are some
special forms of PRINT that we can use to alter this behaviour. Add a comma

70 Graphics and colour

to the end of line 10 and then RUN it. This should look like the listing below
and result in output as shown.

10 PRINT "FRED",
20 PRINT "A"

!="RED A

Obviously the comma has affected the screen position of the information in
the following line which has now moved to the end of the PRINT statement in
line 10. The screen can be thought of as having five formatting fields, each
eight character positions wide, across each line. If a comma is used to
separate two items which are to be PRINTed, or as the final item in a PRINT
statement, then the PRINT position is moved forward to the start of the next
format field. This can be very convenient when we wish to PRINT out tables
of figures.

There is another character which we can use as a separator in PRINT
statements and this is the semi-colon,';'. Alter line 10 again and RUN the
program. This should result in the listing and output shown below.

10 PRINT "FRED";
20 PRINT "A"

!="REDA
Well we seem to have altered FRED's sex this time! The semi-colon causes
the PRINT position to be left wherever it was when PRINTing stopped. The
example below shows the output produced by two sample PRINT state
ments. Note that every time the Orie has to PRINT out a number it PRINTS a
space before and after the number as well.

10 PRINT 1,2;3
20 PRINT 11A11, 11g11 ;"C''

1. 2 3
A BC

There is another command we can use to affect the position of the PRINTing,
this is done by using the TAB command. This is similar to the TAB function
on a typewriter. By saying PRINT TAB(n); we can move the PRINT position to
the n'th character position along the line. Try the program below which
should give the output shown after the listing.

10 FOR 1=0 TO 5
20 PRINT TABCIJ; "HELLO"
30 NEXT I

HELLO
HELLO
HELLO

HELLO
HELLO

HEL.LO

Graphics and colour 71

Looking at the output it seems that TAB(0), TAB(!) and TAB(2) had no
discemable effect, but this is because character position 0 and character
position I are reserved by .the Orie for special codes (we'll come to these in a
moment). So the PRINT position is already set to 2 when we start on a new
line and, as on a typewriter, you cannot TAB backwards. If we wish to use the
first two character positions, 0 and 1, we can press the conTRoL and J keys
together. This is one of the combinations the Orie recognises as a toggle
which reverses the state of an internal switch (in this case the column
protection switch), and since it was on it will now be turned off. Ifwe RUN
the program again we should get the output shown below.

HELLO
HELLO

HELLO
HELLO

HELLO
HELLO

Now we come to the question, what were the first two columns reserved for
in the first place? Well, if you tried the above example you've probably
guessed by now. These columns affect the colour of text on the screen.
When you use these columns the PRINT appears as white on black instead of
the usual black on white which is like ink on a piece of paper. This is exactly
what these columns are used for. The first column usually holds the PAPER
colour and the second column holds the INK colour. Toggle the protection
switch again with CTRL and J so that the first two columns are protected
again. Now we can try changing the INK and PAPER colours on the screen.
The Orie associates each number between 0 and 7 with a particular colour
and the command PAPER nor INK n will set the background or foreground
colours appropriately, provided n is in the range 0-7. The colour for each
number is shown is the table below.

72 Graphics and colour

0 BLACK
1 RED
2 GREEN
3 YELLOW
4 BLUE
5 MAGENTA
6 CYAN
7 WHITE

Try typing in PAPER 1 and press RETURN. The screen should instantly
change to a display of black characters on a red piece of PAPER. Try the INK
command in the same way but remember that if the INK colour is the same as
the PAPER colour you won't be able to see the characters.

On the Orie all colours are controlled by special characters known as
attributes. These are sometimes referred to as 'serial' attributes because
they affect everything that follows on from them. So what the Orie does
each time we alter a colour is to go down one of the protected columns
putting a colour attribute in that position on each line, which consequently
affects the rest of the line. Type in the following program and LIST it on the
screen. Now RUN the program and it will show all the combinations of INK
and PAPER colours available. Once again, remember that when the INK and
PAPER are the same the TEXT will seem to disappear.

l0 FOR I=0 TO 7
20 INK I
30 FOR J=0 TO 7
40 PAPER J
50 WAIT 50
60 NEXT J
70 NEXT I
80 INK 0

Returning to PRINTing, there is one more item we can use to affect the
position at which we PRINT. This is by using the@ ('at') symbol with two
numbers. The first number is like the column number in the TAB function,
the second number specifies which row of the screen we are going to move
to. The column position can be anywhere from 0 to 39 and the row position
can be anywhere from 0 to 26. As a quick example RUN the following
program (or enter it as a direct command).

10 PRINT @10, 10; "HELLO"

Graphics and colour 73

As expected, this places a "HELLO" quarter of the way across and about a
third of the way down the screen. Not very exciting you might think, but
this ability to PRINT at any screen location is the basis of most games! The
following example should give you some idea of why this is so.

10 FOR X=2 TO 30
20 PRINT @X,10;·• WHIZZ2"
30 NEXT X

This sort of animation is possible in all directions around the screen, but we
do not want to see the flashing cursor while we are PRINTing characters on
the screen. To prevent this we use one of the other toggles, CTRL Q. This
switches the cursor on and off and to do this in our program we used the
CHR$ function which produces characters from their code numbers. We
ought to remember to turn it back on at the end of our program as well so
here's a modified version of the previous listing which does this:

10 PRINT CHR$Cl/)
20 FOR X=2 TO 30
30 PRINT @X, 10;" WHIZZ2"
40 NEXT X
50 PRINT CHR$Cl/)

The next program is a game using all the things we have met so far. You are
a duck hunter and you must shoot your arrows at the ducks ">" that fly
across the top of the screen. This program has been indented to show its
structure, but the leading colons and spaces make no difference to how it
RUNS.

\0 CLS : S=0 : PX=20
20 PAPER 6 PRINT CHR$Cl/);CHR$(6)
30 REPEAT
40 PRINT @10, 0; "SCORE" ;S
50 WAIT RNDC1)*100
60 DX=2 : REPEAT
70 IF KEY$=CHR$C9) AND PX<37 TH

EN PX=PX+l
80 : IF KEY$=CHR$C8) AND PX>2 THE

N PX=PX-1
90 :
100 :

PR I NT @ PX' 25 j 'I A II ;

DX=DX+l : PRINT@ DX,3;" >"

74 Graphics and colour

110 : IF KEH="S" THEN 230 ELSE IF
KEY$<>" " THEN 200
120 : MX=PX+ 1 : Ml=24
130 : REPEAT
140 : PRINT @MX,MY;":"
150 ; PRINT @MX, MY+l; II ";

160 : MY=Ml-1
170 : UNTIL MY=3
.180

8
190

MX,MI ;" II

IF MX=DX+l THEN S=S+l : DX=3

PRINT @MX, MY+ 1;" II : PRINT @

200 : UNTIL OX=38
210 : PR l NT @39' 3 ; II " ;

220 :UNTL KEl$="S"
230 :PRINT CHR$C17J;CHR$C6J

By now you might be wanting to know how you can have more than two
colours on the screen at once, to make the ducks a different colour from the
hunter, for example. This is where we come back to those serial attributes
which affect the rest of the line. We can produce the attributes by typing
Escape followed by @,A,B,C,D,E,F or G. These give the attribute for INK
0-7 respectively. Similarly ESC P to ESC w give the attributes for PAPER. It is
important to realise that these attributes are actually put in a character
position on the screen and affect the rest of the line following their position.
To do this from inside a program we must first PRINT the character which
means Escape (CHR$(27)) and then the character for the letter we wish to
follow the Escape code. This can either be PRINTed directly as "Q", or using
the CHR$ function. CHR$(64+n) gives the attribute for INK n and CHR$(80+n)
gives the attribute for PAPER n. The following program will demonstrate
this for PAPER colours and you can try changing the 80 in the CHR$ function
to a 64 to see the same thing with foreground or INK colours.

10 FOR X=0 TO 7
20 PRINT CHR$C27J;CHR$C80+XJ;"HELLO A

GAIN"
30 NEXT X

There are other special attributes which can be put on the screen in this way
and these produce various effects on the rest of the line. The table below
shows the characters which can follow Escape and the attributes or effects
they produce.

Graphics and colour 75

ESCAPE SEQUENCES AND ATTRIBUTES

ESCAPE@ 0 Black ink
ESCAPE A 1 Redink
ESCAPEE 2 Green ink
ESCAPEC 3 Yellow ink
ESCAPED 4 Blue ink
ESCAPEE 5 Magenta ink
ESCAPEF 6 Cyan ink
ESCAPEG 7 White ink
ESCAPEH 8 Standard text
ESCAPE I 9 Alternate text
ESCAPEJ 10 Standard Double height
ESCAPEK 11 Alternate Double height
ESCAPEL 12 Standard Flashing
ESCAPEM 13 Alternate Flashing
ESCAPEN 14 Standard Double height Flashing
ESCAPEO 15 Alternate Double height Flashing
ESCAPEP 16 Black paper
ESCAPEQ 17 Red paper
ESCAPER 18 Green paper
ESCAPES 19 Yellow paper
ESCAPET 20 Blue paper
ESCAPED 21 Magenta paper
ESCAPEV 22 Cyan paper
ESCAPEW 23 White paper

The following listing contains many new features so we will go through it
line by line. The first line PRINTS the character with ASCII code 12 to the
screen. This is the clear screen or form feed character, so the computer
takes a new sheet of paper - just a different way of doing CLS. The second
line PRINTS another toggle, this one CTRL D affects double PRINTing. When
this is on, anything PRINTed to the screen is repeated on the row below. The
third line produces the attribute for double height and flashing. Line 40
PRINTS the message on the screen where it is PRINTed twice. Line 50 toggles
the double PRINTing off again.

10 PRINT CHR$Cl2)
20 PRINT CHR$(4J;
30 PRINT CHR$C27J;"N";
40 PRINT"A BIG FLASHING HELLO"
50 PRINT CHR$(4)
Try taking out the lines toggling double printing or the line producing the
attribute. The effects produced when you make these modifications should

76 Graphics and colour

help you understand the role each plays producing the message. Note that
we have arranged to have the top line of our double height characters on line
I and the bottom half on an even line (line 2). This is because the computer
must assume that if you are using double height all the top halves of
characters are on odd lines with their matching bottom half hopefully on the
even line below. Try adding a line like this to start PRINTing on the wrong
line and see what happens when we get it wrong.

15 PRINT

Here is a short program which demonstrates how useful this arrangement
for finding the tops and bottoms oflines can be.

\121 CLS
2121 REPEAT
3121 FOR X=l TO 7
4121 PRINT CHR$C27J ;"J" ;CHR$C27J ;CHR$C8

121+XJ;
5121 PRINT" ORIC HANDBOOK 81 PAN 800

KS"
6121 NEXT
7121 UNTIL KEY$<>""

LORES&

In this mode the Orie displays a black screen on to which the standard
characters can be PLOTted in. a similar way to that in which they were
PRINTed at a position on the text screen. In fact the LORES 0 screen is just the
same as the text screen but the attribute at the start of the s.creen is now just
the one which selects the standard character set. The colours white on black
are the default colours which are used if no attributes for these are found

The PLOT command has two co-ordinates, as for PRINT (iv. The first, the X
co-ordinate, can be from 0-39, whilst the second, the Y co-ordinate can
vary from 0-26. Using PLOT does not affect the PRINT position. The PLOT
command is not as flexible as the PRINT (i1l command since it requires a string
of characters. Thus if we wished to PLOT a number we would have to use a
command like PLOT 10,10,STR$(1).

Using PLOT we can also put individual characters on the screen and in this
respect it is a very different statement to the PRINT (ii command. We can use
PLOT to put characters on the screen in inverse. To get inverse characters we
must use the ASCII code of the character plus 128 and this cannot be done
from PRINT. When a character is PRINTed in inverse the colours used are the

Graphics and colour 77

logical inverse colours. This does not mean that the character will appear as
PAPER on INK colours but means that the character will appear as the logical
inverse of INK on the logical inverse of PAPER. The logical inverse of a colour
is found by taking the number of the colour away from seven. This gives us
the number of the colour which will appear. Thus if the PAPER was I it
would be PRINTed as though PAPER were (7-1) or 6 and similarly for the INK.

The following listing creates the string of inverse characters from the
normal string and then uses PLOT to place them on the screen. Just to prove
that PRINT doesn't allow inverse characters they are also PRINTed at the top
of the screen.

10 CLS
20 PAPER 1 INK 7
30 A$="HELLO"
40 FORI=1TOLENCA$J
50 8$=8$+CHR$CASCCMID$CA$,IJJ+128J
60 NEXT
70 PLOT 10, 10, A$
80 PL.OT 10, 11, 8$
90 PRINTA$,8$

An associated command is the SCRN function which returns the value stored
at the SCReeN location specified by X and Y (as for PLOT). This value is
usually the ASCII value of the character displayed at that position, but it
could also return the value of the attribute stored there if there is nothing
actually displayed. The following listing demonstrates both of these ways of
usingSCRN:

10 LORES 0
20 PL.OT 10, 10, "A"
30 PRINT SCRNC10,10J
40 PRINT SCRNC0,0J

The 8 that's produced by the second use of SCRN can be explained by
looking at the table of Escape sequences and attributes we gave earlier on.
This figure simply represents the attribute for the standard set. In fact it
doesn't matter whether you overwrite this or not because this is, of course,
the default setting anyway. The reason for these codes being put here will
become apparent in the next section on the LORES 1 mode. As the above use
of SCRN implies the screen is actually represented in memory by a set of 1120
memory locations (this is 28*40, since there are 28 lines on the screen
including the top status line). These memory locations stretch from #BB80
or decimal 48000 to #BFDF or 49119 and we can address these locations

78 Graphics and colour

individually by using POKE. Try the following program which fills all these
locations with the ASCII code of" A". ·

10 FOR J=#BB80TO#BFE0
20 POKE I,65
30 NEXT I

LORES I

In much the same way that LORES 0 was just TEXT mode with all the first
column initialised to 8, LORES I initialises the first column to 9, (the
attribute for the alternative character set). Thus we can print a variety of
alternative characters and they will appear as combinations of 6 little
squares inside one character block. Try plotting the whole alphabet on the
screen. You will see that there seems to be a pattern to the arrangement of
blocks. In fact there is a very logical arrangement to their patterns. To
understand how these blocks are set up we must first get right down to basics.

Inside the computer all the numbers are stored in binary. For each
location we have eight binary digits, each of which can be 1 or 0. In the
screen locations these bits can each have a special meaning. As we have
seen, the bits are worth 128,64,32,16,8,4,2 and 1. From the above it is plain
that the highest bit (128 or b7), indicates that inverse video is to be used for
that particular character's display, but you should also note that this does
not affect the rest of the line! The next two bits down, b6 and bS, (worth 64
and 32 respectively), can have a special significance when considered
together. If they are both zero then the location is an attribute and the
remaining bits will add up to a number between 0 and 31 that can be looked
up in the attribute and Escape sequence table above to see what effect it has.
We could also have the highest bit set making the number larger than 128,
but bits 5 and 6 being zero will still indicate that it is really an attribute. Try
the following program.

10 L,ORES 1
20 A$=CHR$Cl45J+"ABCDEFGHIJKLMNOPQRST

UUWXl'2"
30 PLOT 5,10,A$

145 is the attribute for red PAPER with 128 added on to indicate inverse. This
means that the space where the attribute lies is shown in the inverse of red,
i.e. cyan, and the rest of the line is PRINTed in red. You will have noticed by
now that the red does not go right to the end of the line, but reaches only as
far as the last printed alternate character! Well, a quick check with SCRN
should reveal the situation, in that all the other locations have been set to 16,
which is the attribute for black PAPER. Now let's look at how the bits that
choose the character are arranged. Remember that we said it would be an

Graphics and colour 79

attribute only if both bS and b6 were 0. For the normal character set all the
bits from b6 down to b0 are added up to get the code of the character to be
displayed. This also happens in the alternate set, but the way that the block
characters have been defined is designed to allow each block of the six to be
represented by one bit. There are seven bits in the code but we must use one
to keep the code from being an attribute. BS has been chosen to always be
one and the other bits are allocated as follows: The top left block is b0, top
right is bl, middle left is b2, middle right is b3, bottom left is b4and bottom
right is b6. To get a character with the right blocks set, we just add up the
values for the bits representing each block, then add in 32 for bit S. In this
way we caii address the Orie graphics as MEDIUM RESOLUTION graphics. We
can think of the screen as being 0 to 79 across and 0 to 80 blocks down. The
following program shows a subroutine, which will plot any individual block
on this coordinate system, in use. We must of course ayoid plotting to x
co-ordinates less than two since these would lie within the first character
position and erase the alternate set attribute.

10 DIM PC2,3J
20 FOR I=l TO 3
30 READ PC 1, IJ, PC2, IJ
40 NEXT I
50 DATA 1,2,4,8,16,64
100 LORES 1
110 Y=40
120 FOR X=2 TO 79
130 GOSUB 1000
140 NEXT X
150 FOR X=2 TO 79 STEP 0.2
160 1=40+SINCX/l0J*35
170 GOSUB 1000
180 NEXT X
190 END
1000 REM PLOT X,Y : MEDIUM RESOLUTION
1010 CX=INTCX/2) : PX=INTCXJ - :.X*2+1
1020 C:Y=INTCY/3) : P"(=JNTCYJ·-cn:3+1
1030 P=#BB80+CCY+1J*40+CX
1040 Q=PEEK C P J : IF Q <32 THEN Q=32
1050 Q=Q OR PCPX, PYJ : IF Q)95 THEN Q

"'Q-32
1060 POKE P,Q
1070 RETURN

80 Graphics and colour

HIRES

This is the Oric's High RESolution graphics mode. We can place points
anywhere on the screen to a resolution of 240 doi:s across and 200 dots
down. As with all the other modes the top left corner is 0,0. There are
several complex and powerful inbuilt commands for HIRES graphics on your
Orie. We will start by taking a look at the two simplest commands.

The first of these is CURSET. This is the command which we use to set the
start position for our graphics cursor. This command has three parameters.
The first two of these are simply the x and y co-ordinate_s of the point in
question. The third parameter is one which is used by nearly all the HIRES
graphics commands, so we'll deal with it in detail here and refer back later
on. This final parameter is know as the foreground/background or fb
parameter. This affects the way points are plotted on the screen. The fb
parameter may have any of the four values 0 to 3. The values and the way
they affect the plotting commands is are summarised in the table below.

fb Effect

0 The points are plotted in the background colour. (This can also be
thought of as un-plotting a point).

1 The points are plotted in the foreground colour.
2 The points are inverted i.e. if they were in the foreground colour before

being plotted then they are changed to the background colour and vice
versa.

3 Null. The points are not affected although the graphics cursor position
will be set to the last point visited.

The next graphics command to consider is ORA w. This has three para
meters like CURSET and these are the x and y parameters followed by the fb
parameter. However, DRAW works in a very different way to CURSET. The x
and y values specified are not the co-ordinates of a point on the screen but
are relative to the current graphics position. This means that they are added
to the current position to get the co-ordinates of the point to which the line
will be drawn. We must be careful to ensure that this point will not be
outside the screen area or .the Orie will have to stop and tell us there's an
error in our program. The program below demonstrates the difference
between CURSET and ORA w by first plotting the points in the corners of the
screen and then, after a key press, DRAWing the lines joining them up. Note
that we use CURSET to set the start position before DRAWing the lines.

10 PAPER 0: INK ?
20 HIRES
30 CURSET 0,0,1
40 CURSET 0,199,1

50 CLJRSET 239,199,1
60 CLJRSET 239,0,1
70 GET A$
80 CLJRSET 0,0,3
90 DRAW 0,199,1
100 DRAW 239, 0, 1
110 DRAW 0,-199,1
120 DRAW -239,0,1

Graphics and colour 81

There is a third simple, but less often used, graphics command and this is
CURMOV. This is the "relative movement" version of CURSET. The x and y
parameters are added to (or subtracted from) the current graphics position
as they are in DRA w. In fact this command is almost the same as using DRAW

with the fb parameter set to 3. Try the following two versions of a program
to demonstrate the different workings of CURSET and CURMOV.

1.0 PAPER 0: INK 7
20 HIRES
30 FOR I=l TO 15
40 CURS ET I ,r ,1

50 NEXT I

10 PAPER 0: INK 7
20 HIRES
30 FOR I=l TO 15
40 CLJRMOV I, I ,1

50 NEXT I

To demonstrate the high resolution and accuracy of plotting achievable on
your Oric's screen try the following program. This should result in a TV
picture which has rippling colours where the lines are close together. This is
because your Orie is designed to exploit the display capability of your
domestic TV to its limits and unless you have a very expensive monitor/TV
this is as fine a resolution as it can handle.

10 PAPER 0: INK 7
20 HIRES
30 FOR I=0 TO 239 STEP 2
40 CURS ET I, 0, 1
50 DRAW 239-I,199,1

82 Graphics and colour

60 CURSET I, 199,1
70 DRAW -I,-199,1
80 NEXT I

A further feature the Orie has associated with the DRA wing of lines is the
PATTERN facility which allows you to specify the type ofline drawn, as dots,
dashes, etc. The PATTERN command has one parameter between 0 and 255,
and this defines, by its binary equivalent, a PATTERN which will be used
when drawing any line of eight points in length. The default PATTERN is 255
which in binary is 11111111 so all the dots in a stretch of line are plotted. If
we were to use PATTERN 85 which in binary is 01010101 we would get lines
drawn with every other point left out. The program below draws a sample
length of line in each of the available PATTERNS so you can see what's
possible.

10 HIRES
20 FOR 1=0 TO 31
30 FOR J=0 TO 7
40 PATTERN J*32+1
50 CURSET J*30,I*6,3
60 DRAW 24' 0, 1
70 NEXT j

80 NEXT I

The following program DRA ws a demonstration pattern but first allows you
to select the PATTERN to be used for drawing the lines. This will allow you to
experiment with the PATTERN command.

10 PAPER 0: INK 7
20 HIRES
30 INPUT "PATTERN II ;P

40 PATTERN P
50 FOR 1=0 TO 199 STEP 5
60 CURSET r, 0, 1
.70 DRAW 199-I,I,1
80 CURS ET I, 199, 1
90 DRAW -I,I-199,1
100 NEXT I

Now we come the advanced graphics commands available on your ATMOS
The first of these is CIRCLE and this has two parameters. The first parameter
is the radius of the CIRCLE and the second is the fb parameter. The CIRCLE

Graphics and colour 83

will be plotted using the current graphics position as the centre. We must
ensure, as with DRA w, that the CIRCLE does not go off the screen or we will
cause an error. The program below demonstrates the CIRCLE command in
action by picking a centre at random for the x and y co-ordinates. The
minimum distance from this point to the edge of the screen is then
calculated as this is the maximum radius we can use for a CIRCLE about this
point. Note that 0 is not a valid value for the radius, so we don't try to plot a
CIRCLE in this case. The central point of the circle has been set with CURSET

using an fb parameter of 1 so that you can see where it lies.

l0 PAPER 0: INK 7
20 HIRES : REPEAT
30 X=INTCRNOC1)*239)
40 l=INTCRNOC1)*199)
50 IF 1>99 THEN 01=199-1 ELSE 01=1
60 IF X>119 THEN OX=239-X ELSE DX=X
70 IF DX>DY THEN R=DI ELSE R=DX
80 CURSET X,Y,1
90 IF R>0 THEN CIRCLE R,1
100 UNTIL KEl$="S"

The next program shows a slightly more constructive use of CIRCLE with the
centres not being plotted.

~0 PAPER 0: INK 7
20 HIRES : REPEAT
30 FOR X=3 TO 50 STEP 3
40 CURS ET X+50,100,3
50 CIRCLE X*2, 1
60 NEXT

In much the same way that we read the contents of a particular screen
location in the TEXT modes with the SCRN function, we can examine the
status of any point on the screen with the POINT command. This has two
parameters, logically, the x and y co-ordinates of the POINT to be examined.
The value 1 is returned by the function if the POINT is displayed in the
foreground colour and 0 is returned if it is displayed in the background
colour. This not the same as reading the contents of a whole location as we
did with the SCRN command. This is because each of the 200 lines of the
screen is, in fact, made up of just forty screen memory locations. The bits in
these locations can indicate, just as on the TEXT screen, that an attribute is
present at this location (bits 5 and 6 both 0). If this is not the case then the
lower six bits represent the status of a row of 6 points along the line, where a

84 Graphics and colour

binary one corresponds to a foreground point and a binary 0 corresponds to
a background point. This is how we get 240 or 6*40 points along each row.
Bit 7 is used to indicate that a particular block of six points is to be displayed
in the logical inverse colours and in this way we can access four colours,
even though we have only set one foreground colour and one background
colour. We can set the attributes using PAPER and INK just as we did in TEXT

mode and these commands will place an attribute in the first and second
positions of each of the 200 rows of the high resolution screen. Of course
this means we will not be able to plot points with x co-ordinates less than 12
because these would lie within the locations used for attributes. Now comes
the question of how we access the inverse bit in the memory locations. Well,
this is just one use of the FILL command for high resolution graphics. With
this we can FILL a block of screen locations so many rows down, by so many
bytes or locations across, with whatever number we choose. We must set
the graphics cursor to the top line and left-hand corner ofthe block we wish
to access and then issue the FILL command with the following three
parameters. Parameter one is the number of rows down, number two is the
number of bytes across and number three is the number which we wish to
put into all of these locations. We could use this to FILL an area of the screen
with a pattern of points, but in this case we will use it to set the highest bit of
all the locations on the right-hand side of the screen. Note that we also set
bit 6 so that the locations are not treated as attribute locations so 192 in line
40 is 128+64.

10 HIRES
20 PAPER 2 : INK 4
30 CLJRSET 120,0,3
40 FILL 200,20,192
50 CURS ET 120, 100, 3
60 CIRCLE 90,1

As we mentioned above the HIRES screen is made up of200*40 locations and
we can access these directly by using POKE. These locations lie between
#A000 and #BF40 and the following program POKES 65 into all the
locations. This time the 65 is interpreted not as the ASCII code for A but as
signalling with bit 6 that it is not an attribute, and with bit 0 that the
left-hand point of each line of 6 is in the foreground colour.

5 HIRES
10 FORJ=#A000TO#BFE0
20 POKEI,65
30 NEXT

Graphics and colour 85

Since we can POKE any value we like to the screen we can use this to set up a
High RESolution colour display using all eight colours. The following
program produces a sinusoidal striation of colour down the screen in this
manner.

10 HIRES
20 FORY=0T0199
30 S=INTCSINCY/l0J*8J
40 FORX=0T039
50 P=#A000+Y*40+X
60 Q=CS+XJ-INTCCS+XJ/8J*8+16
70 POKE P,Q
80 NEXT
90 NEXT

By using this method of placing attributes on the HIRES screen we can
produce more colours from the Orie. We simply mix two different colours
together on alternate lines and we can make at least 36 different colours.
The following program demonstrates some of the colours which can be
achieved. Even more shades can be accessed by overlaying patterns of
foreground colours on these striped backgrounds!

t 'COPYRIGHT PAN LTD
10 PAPER 0: INK 7
20 HIRES
30 FOR A=0 TO 7
40 FOR 8=0 TO 7
50 FOR 1=8*20 TO 8*20+20
60 P=#A000+Y*40+A*5
70 IF INTCY/2)=1/2 THEN Q=l6+A

=-16+8
80 POKEP,Q
90 NEXT
100 NEXT
110 NEXT

ELSE Q

So far the subject of writing on the HIRES screen has been neglected. We can
do this with the CHAR command which is one of the most powerful and
potentially exciting commands on your Orie. This command allows us to
place characters co an accuracy of one point not just the character positions,
a feature only found on one, the most expensive, of the Oric's competitors.

86 Graphics and colour

The CHARacters are placed at 'the current graphics position with the
command CHAR followed by three parameters. The first parameter is the
ASCH code of the CHARacter to be plotted, the second parameter is the
character set from which the character is to be taken (0 for the standard set
and 1 for the alternative set), and the third parameter is our old friend the fb
parameter. This truly remarkal:ile feature, which will allow animated dis
plays and games of superb quality to be constructed on the ATMOS, is
demonstrated by the program below which uses a subroutine to place a
string of characters on the HIRES screen.

1.0 HIRES
20 PAPER : INK 3
30 A$="0RIC POWER"
40 FOR W=l TO 20
50 CURSET 30,50+W*3,3
60 GOSUB 100
70 NEXT
80 END
100 REM PRINT STRING WITH SPACING w
110 FOR I=l TO LENCA$J
120 CHAR ASC CM !0$ CA$, IJ J , 0, 1
.130 DRAW W,0,3
140 NEXT I
150 RETURN

Character Graphics

Having looked at the different modes available to us we now come to the
most flexible of the Oric's graphics features: characters. When we men
tioned games in the previous section you may have thought that there
wasn't going to be much excitement in watching a string of letters zoom
around the screen, no matter how accurately, but in this section we will see
that we are not limited to using letters. In fact we are not limited at all in the
objects we use! First, though, let's review what we know of characters.

We have used characters in both TEXT and HIRES displays and by now you
might be wondering how they are made. Well the answer to this can be
found by examining exactly what happens when we put a character on the
HIRES screen. At this time the computer must know which points to plot in
foreground colour and which are to be plotted in the background colour
within the area of the character. It finds this information out by looking at a
table which is kept in the memory. In this table there are stored eight pieces
of data for each character. These pieces of data can be thought of as eight

Graphics and colour 87

binary PATTERNS each of which defines a single horizontal line of the
character. In fact only the lowest six bits of the pattern are used for each line
to fit in with the number of displayable pixels across each location. It will
help to understand how these patterns fit together to define a character if
you think of each character as being a 6 by 8 grid of blocks.

N co
("') _., Cl) .._,. N

= 8

= 20

-- 34

= 34

= 62

=- 34

34

= 0

In the figure above the numbers above each block are the values of the
equivalent bits in the pattern. The figures at the side of the block are the
sum of the bits in that row which are on (marked by shading). This is how
the Oric's normal characters are defined. In the HIRES mode this informa
tion is used to decide which points to display to produce a character. In the
TEXT modes this information is encoded into the TV signal to produce the
character on the display at the appropriate character position.

Unlike most computers, the Orie keeps the whole of its character
defining table in RAM. This means that we can change any character to
be whatever we like. This has enormous potential for games and
animated displays!

When you turn your Orie on, or press the reset button, it copies the
character sets, standard and alternative, from its permanent ROM mem
ory into RAM. These tables comprise 128*8 pieces of data for the stand
ard set definitions, and 112*8 for the alternate set. These tables are
always stored in memory just before the screen memory. When we
switch from TEXT to HIRES these tables are moved to maintain their
position as being just before the screen memory. In TEXT mode they start
at location #B400 (for the standard set) and location #B800 (for the
alternate set). In HIRES mode the tables are moved to start at #9800 for
the standard set and #9C00 for the alternate set. The position of the first
of the eight pieces of data in the table for defining a character can be
found by adding 8 multiplied by the ASCII code of the character in question
to the start of the table. Thus the data for A is stored at #B400+8*65

88 Graphics and colour

(ASCII A) which is (in decimal) 46600. Try the following program which
POKES new values into these locations and then PRINTS an A. The A should
appear as an italic A because we have now redefined the way Orie draws an
A. Try switching to HIRES mode and use CHAR to place an A on the screen to
prove that the characters have been copied down correctly.

10 FOR A=0 TO 7
20 READ B
30 POKE 46600+A,B
40 NEXT
50 DATA 14,17, 17,17,62,34,34,0

To take full advantage of this capability for changing the shapes of letters
we will need to calculate many different patterns in binary. Computers are
supposed to make life easier for us so let's use the Orie to do the hard work.
The following listing is a CHARACTER GENERATOR program that allows you
to define any shape you want and store the data in either character table. It
also allows you to edit a character definition from either table. The
character is displayed in large scale inside a grid and we use the full block
character from the alternate set to fill in the squares. The squares are also
plotted actual size on the screen as points below the grid and in this way we
can directly read the binary equivalent from the screen memory (remem
bering that bits 6 and 7 are not part of the definition). To move the cursor
use the arrow keys and to change a square press the space bar. To Save a
character press S, to Edit a character press E ,and Quit the program use Q.
The S and E options will ask you to specify which character set (0 for
standard and I for alternate) and which character (the ASCII code) you wish
to save or edit, to or from. If you wish to use the data in another program
you will be able to read it off the screen where it is displayed to the right of
the grid when a character is under examination.

Listing CHARACTER GENERATOR

10 H1MEMtt97FF
20 GOSUB 200
30 REPEAT
40 CURSET XC,YC,3:WAIT 10:CHAR 95,1,2
50 WAIT 10:CHAR 95,1,2

Graphics and colour 89

60 A$=KEY$
70 UNTIL A$<>""
80 IF A$=CHR$C9J AND XX<6 THEN XX=XX+

1 :XC=XC+6:GOTO 30
90 IF A$=CHR$C8J AND XX>l THEN XX=XX-

1 :XC=XC-6:GOTO 30
100 IF A$=CHR$C10J AND YY<B THEN YY=Y

Y+1 :YC=YC+B:GOTO 30
110 IF A$=CHR$Cl1) AND YY>l THEN YY=Y

·r-1 :YC=YC-B:GOTO 30
120 lF A$=" " THEN GOSUB 300:GOTO 30
130 lF A$="E" THEN GOSUB 400:GOTO 30
140 lF A$="S" THEN GOSUB 500:GOTO 30
150 IF A$<> "Q" THEN GOTO 30
160 STOP
200 REM lNlT IALI SE DISPLAY
210 HIRES
220 FOR X=100 TO 136 STEP 6:CLJRSET x,

3-0,1 :DRAW 0,64,1 :NEXT
230 FOR Y=30 TO 94 STEP B:CURSET 100,

Y,l :DRAW 36,0,1 :NEXT
240 X=119:Y=100:M=#A000+Y*40+1NTCX/6J

+1
250
260
270
300
310
320
330
340

4

350

xc~100:YC=30:XX=l:YY=l

GOSUB 900
RETURN
REM CHANGE SQUARE
CURSET XC,YC,3: CHAR 95,1,2
CURSET X+XX,Y+YY,2
FOR I=l TO 8
P=PEEKCM+40*IJ :IF P>63 THEN P=P-6

P$=MJO$CSTR$CPJ,2J:P1=180:P2=I*8+
24:GOSLJB 600

360 NEXT
370 RETURN
400 REM EDIT CHARACTER
410 GOSUB 700

90 Graphics and colour

4

420 GOSUB 200
430 CURSET X+l,Y+l,3
440 CHAR A,S,1
450 FOR J=X+l TO X+6
460 FOR K=Y+l TO Y+B
470 IF POINTCJ,KJ THEN GOSUB 800
480 NEXT;NEXT
490 GOTO 330
500 REM SAUE CHARACTER
510 GOSUB 700
520 FOR I=l TO 8
530 P=PEEKCM+40*IJ :IF P>63 THEN P=P-6

540 POKE C#97FF+S*#400+A*B+IJ,P
550 NEXT
560 GOSUB 200
570 RETURN
600 REM PRINT STRING ON SCREEN
610 CURSET P1,P2,3:FILL 8,3,64
620 CURSET P1,P2,3
630 FOR K=l TO LENCP$J
640 CHAR ASCCMIDCP,KJJ,P3,1
650 DRAW 6,0,3
660 NEXT
670 RETURN
700 REM INPUT SET AND ASCII CODE
:;: 10 REPEAT
720 INPUT"WHICH SET" _;S
730 UNTIL S=l OR S=0
740 REPEAT
750 INPUT"WHICH ASCII CODE" ;A
760 UNTIL A>32 AND A<128
./70 RETURN
800 REM PLOT J,Kth SQUARE IN GRID
810 TX=100+6*CJ-X-1J
820 TY=30'+8*CK-Y-1J
830 CURSET TX,TY,3
840 CHAR 95,1,2

Graphics and colour 91

850 RETURN
900 REM DlSPLAY CHARACTER SET
910 FOR L=32 TO 96 STEP 32 :P$="" .
920 FOR N=L TO L+31
930 P$=P$+CHR$CNJ
940 NEXT
950 P1=20:P2=115+1NTCL/3J:P3=0
960 GOSUB 600
970 P1=20:P2=155+1NTCL/3) :P3=1
980 GOSUB 600
990 NEXT
1000 P3=0:RETURN

The final program in this chapter demonstrates the use of a defined
character in a simple animation program of an airplane following a path
specified in polar co-ordinates. This should give you some idea of the power
of defined characters for your Orie and provide a fitting end to this chapter
exploring the amazing graphics prowess of the ATMOS.

',0 HI MEMtt97FF
20 FOR P=0 TO 7
30 M=#8400+8* (ASC (II a.,,) +P)
40 FOR A=0 TO 7
50 READ B
60 POKE M+A,8
70 NEXT
80 NEXT
90 REM DATA FOR a. b c d e f g h

-., 100 DATA 30, 30, 6, 6, 38, 39, 38 , 0 -- --- :,.--~ -- - ---> '"
J10 DATA 2,3, 18,38, 12,24,48,40 ···-·--·-·--··-··· -,,'>JI.
120 DATA 0,57, 1, 63,63, 16,0,0 - -~ .. 'f-1:<-.. . '

13,., DATA 16 8 36 48 24 45 7 2 '!'_.:... ._. ____ ~ ,,.
"' ' ' ' ' ' ' ' (~ '-' •. _ 140 DATA 0, 38 , 39, 38 , 6 , 6, 30, 30 - ·----- > .:..~

• i.t
~-150 DATA 2,4,9,3,6,45,56, 16--- --· ---- -1 ...,.

::: 1 6 0 DAT A 0, 3 9 , 3 2 , 6 3 , 6 3 .• 2 , 0 , 0 - ·-- ~ ~
:., 170 DATA 16, 4 8, 18 , 25, 1 2 , 6, 3, 5 · '• }.~·

200 HlRES :PAPER 5:INK 1
210 OX=l 80: 0Y=101
220 R=80:PP=Pl/l00

92 Graphics and colour

230 REPEAT
240 FOR A=0 TO 2*PI. STEP PP
250 X=120+COSCAUR
260 Y=100+SINCAJ*R
270 C=37+INTCCA+PI/8)/CPI/4JJ
280 IF C=105 THEN C=97
230 CLJRSET OX,OY,3:FILL 8,2,64
300 CLJRSET X,Y,3:CHAR C,0,1
310 OX=X :OY=Y
320 NEXT
330 UNTIL KEY$0""

8 The sound
of music

The Orie sound and music facilities are extensive. For the games enthusiast
who requires easy-to-use sound effects, the Orie comes with ready made
ZAP, SHOOT, PING and EXPLODE. These onomatopoeic commands produce
exactly the noises their names lead you to expect, and what's more they do
so at impressive volume levels. Not for the Orie the insipid whimpering of
some other computers' sound facilities. The Orie belts out its noises and
tunes in a loud, positive voice.

The flexibility and sophistication of the other Orie sound commands are
also something to shout about.

MUSIC is a command which supplies the user with a western style
chromatic scale on which to base compositional programs. For sound
effects there is the SOUND command which controls the noise generator
necessary for simulating ro!iring rockets and exciting explosiOns. This
chapter takes us out into the deep space of music on the micro. Our first
stop on this journey then are the ready-made sound effect commands ...

There are four pre-defined BASIC sound instructions on the Orie: ZAP,

SHOOT' PING and EXPLODE. By simply typing in ZAP (and pressing RETURN)

the sound of aliens letting fly with another blast from their laser cannon is
immediately conjured up. Alternatively the one-line program:

10 FOR N = I TO 100: SHOOT: WAIT 30: NEXT

will straight away give an aural impression of a raucous evening in Dodge
City. These commands are ideal game fodder and can be put to good use in
your future Orie Space Inveiglers and Puc Person programs.

These simple and easy-to-use pre-defined sounds are only an introduc
tion to the Oric's capabilities, however, and for the creative use of sound we
turn to the noisy trio of SOUND, MUSIC and PLAY. In this chapter we will
explain the functions and format of these instructions and explain how PLAY

interrelates with the other two. Let's delve straight into the fascinating
world of micro composition by looking at the Oric's flexible sound
command MUSIC.

94 The sound of music

MUSIC

MUSIC makes use of the three independent square wave generators available
from the Oric's specialist sound chip as a sound source. Each tone has a
separate channel, and by using MUSIC in combination with PLAY, chords and
multiple part compositions are possible. For simplicity's sake we'll initially
deal with Channel 1 only, since this will operate without the use of PLAY.

The syntax of the MUSIC command is:

MUSIC Channel, Octave, Note, Volume

The four values specifying Channel, Octave, Note and Volume must be
separated by commas. Channel can take values of 1, 2 or 3, and defines
which tone generator is in operation. For the remainder of this section we
will be using Channel 1.

Octave refers to the range within which the Note parameter operates. It
takes an integer value from 0 to 6, where. 2 is the 'octave' directly above
middle Con a piano. Octave's purpose will become more clear after looking
at the Note parameter.

Note has a range of integer values from 1 to 12 inclusive. These are
equivalent to the notes of a chromatic scale starting on C (N = 1) and
finishing on B (N = 12). By using Octave and Note in combination a
chromatic scale from two octaves below middle C to B four octaves above
middle C is obtainable.

Volume is a self explanatory parameter and has a range from 1 (quiet) to
15 (ear-splitting).

As a quick demonstration of Music you can key in and RUN the program
'CHROMATIC SCALE' which plays every note in each of the seven
octaves, i.e. from MUSIC I, 0, I, 10 (low C) to MUSIC I, 6, 12, 10 (high B).

l REM *** CHROMATIC SCALE ***
5 CLS
10 PAPER 5
20 FOR 0=0 TO 6
30 FOR N=l TO 12
40 MUSIC 1,0,N,10
50 WAIT 30
60 NEXT N
70 NEXT 0
75 END
The elegance of the MUSIC command really becomes apparent when you
relate music in the real world with MUSIC in the computer. The way Octave
and Note are interdependent is an exact mirror of western musical theory.
To illustrate this look at this diagram of a conventional piano keyboard:

The sound of music 95

LA. '°
In

T
tf)

.-t

N
.-t

• .-t

co

'°
In

tf)

.-t
Ill N
(I .-t
0
z

96 The sound of music

Just as in standard music notation there are twelve symbols for the twelve
notes of the chromatic scale, the Orie recognises twelve values for Note.
Thus Note cannot be 13 or 14, in the same way that there are no musical
notes Hor I.

Using this system a major scale of C (playing all the white notes on the
piano from C to C') would require:

Note= 1, 3, 5, 6, 8, 10, 12, 1
The program 'keyboard' illustrates this principle by turning the top line of
keys on the Orie into a piano-type keyboard (0 being 10, '-'being 11 and
'='being 12):

1 2 3 4 5 6 7 8 9 0
C C# D D# E F F# G G# A A# B

10 REM *** KEYBOARD ***
20 GET A$
30 A=lJALCA$J
40 IF A$="- " THEN A= 11
50 IF A$="=" THEN A=12
60 IF A$="/" THEN PLAY0,0,0,0: STOP
70 IF A=0 THEN A=10
80 MUSJC 1, 3, A, 8
85 WAJ T 20: PLAY0,0,0,0
90 GOTO 20
GET A$ waits for a keypress from the keyboard while line 30 reads the value
of the input into variable A. A will be the value of the number pressed,
except for 0, - and= which will give respectively 10, 11and12. One PLAY

statement is used in this program: PLAY 0, 0, 0, 0. This simply shuts off the
Channel 1 tone generator when the program ends. Press the '/' key to end
the program.

Due to the limitations of the Oric's (or any alpha-numeric) keyboard you
are not about to be able to play 'Flight of the Bumble Bee' using the
keyboard program. However, there is a way of playing technically demand
ing the intricate pieces of music without moving a finger (well, just the one -
to press RETURN). To accomplish this we use the computer to do what it
does best, remember things!

There are two ways of storing musical information in the Orie. The first
of these is the DATA statement.

l REM*** TUNE ***
5 READ A
10 MUSIC 1,3,A,10
25 IF A=llTHEN RESTORE

30 WAJT 25
40 GOTOS

The sound of music 97

100 DATA 3, 5, 6, 8, 10, 6, 10, 10, 9,5, 9, 9, 8, 4
'8, 11

The program 'TUNE' uses a DATA statement to store values for Note (A). In
line 5 the values are READ into the MUSIC statement and line 25 is a simple
method of causing the program co repeat itself.

DATA statements have the advantage of being thrifty with memory space
and so are ideal when a fanfare of some type is needed in a games program.
Their disadvantage lies in the difficulty encountered in changing the DATA.
It is time consuming and confusing crying co edit the melody in any way.
For a more flexible storage system we must look to the second possible
method of storing musical information - in arrays.

The program 'SEQUENCER' below uses the keyboard used earlier as a
method of inputting Note values into a hundred note array, A(l00). Line 13
sets up the array and the next part of the program is the old familiar
'KEYBOARD' program. Line 85 uses WAIT 20followed by PLAY0, 0,0,0to
give any notes the user inputs a finite length of 115 second. (Without this
line the note would continue until another key was pressed.) Line 75 allows ·
us to escape from inputting more notes when we have had enough and the
variable G counts the number of seeps in the sequence.

2 REM *** SEQUENCER ***
4 CLS
5 PRINT "The ORIC one hundred note sequ

encer"
6 PRINT"=== =======

~===II

7 PRINT
8 PRINT "Enter Notes using the top line
of keys"
9 PRINT"When the ldst note ho.s been ent

ere d"
10 PRINT"press '· "
l 1 CLEAR
13 DIM AC 100J
14 G=l
16 FOR N= 1 TO 100
20 GET A$
30 ACNJ=UALCA$J
40 IF A$="- " THEN ACNJ=ll

98 The sound of music

50 JF A$="=" THEN ACNJ=12
?0 JF ACNJ=0 THEN ACNJ=10
75 1F A$="'-" THEN GOTO 399
80 MUSIC 1,3,ACNJ,8
85 WAIT 20: PLAY0,0,0,0
87 G=G+1
80 NEXT N
399 PRJNT
400 CLS
405 PRJNT "Set speed of sequence"
410 INPUT S
411 PRJNT
412 PRINT" To Go press G."
413 PRJNT"To Stop press S."
414 PRJNT"To Enter a new sequence press
E."
415 PR 1 NT" To A l t er speed press A. "
430 GET A$
440 IF A$="G" THEN GOTO 500
450 JF A$="E" THEN GOTO 2
460 JFA$="A" THEN GOTO 399
470 IF A$="C" THEN GOTO 1000
500 FOR N= 1 TO G
505 JF N=G THEN N=l
510 MUS 1 C 1, 3, AC NJ, 10 ,
512 PLOT10,10,"No. :"+STR$CNJ
513PLOT10,12,"Note :"+STR$CACNJJ
520 WAJT S
521 JF KEY$="S" THEN GOTO 430
522 PLOT10,10,"No. :
523 PLOT10, 12, "Note:
530 NEXTN
1000 JNPUT"N" ;N
1015 IF N=0 THEN GOTO 400
1020 JNPUT"NOTE" ;ACNJ
1030 GOT01000

Most of the rest of the program is taken up with instructions and the
labelling of keys to start and stop the sequence, apart from lines 500 to 530.

The sound of music 99

At line 500 we see the use of Gin allowing the sequence to cycle repeatedly,
by resetting N equal to l if the cycle is complete, i.e. N=G. The speed of the
FOR .•• NEXT loop is controlled by the line: 520 WAIT s.

WAIT is an important command in music programming. The timing of
notes in real music is just as important as the pitch of the notes, so in any
serious music program some account must be taken of timing. In
'SEQUENCER' we can make notes last longer by simply entering them
more than once. This is the method used in the commercially available
sequencers incorporated in the Roland SH 10 l synthesiser and the
Sequential Circuits Pro-One Synth. This type of sequencer works perfectly
well for repetitive and mechanical sounding melodies but is not practical
when variation in phrasing is required.

We can program a more subtle compositional routine which allows both
the note, pitch and the length of note to be stored. For a simple illustration
of this see this next program, 'COMPOSITION':

1 REM *** COMPOSITION ***
10 T==l
20 CLS
30 01 MLC50J
40 D1MOC50J
50 D1MAC50J
55 PRINT"TO PLAI IOUR TUNE ENTER 0 FOR .

NOTE"
60 FOR N= 1 TO 50
90 PRINT
100 INPUT''NOTE 1·-12:'' ;ACNJ
110 IF ACNJ=0 THEN GOTO 500
120 INPUT"OCTAUE 1-7" ;OCNJ
125 MUSIC 1,0CNJ,ACNJ,10:WA1T50:PLAl0,0

,0,0
130 INPUT"LENGTH'';LCNJ
150 NEXT
500 PLAIJ,0,0,0
504 T=T+l
505 IF T=5 THEN PLAY0,0,0,0:STOP
510 FOR P=l TO N-1
520 MUSIC!,O(PJ~ACPJ,10
530 WAIT 20*LCPJ
535 IF P= N-1 THEN GOTO 500
540 NEXT P

100 The sound of music

This program uses the three arrays A(), O() and L() to store the note, its
octave and its length. Notes are entered through an INPUT statement so
RETURN must be pressed before the note is heard. To escape from input
mode to playback mode we include the line:

102 IF A (N) = 0 THEN GOTO 500

Zero must be entered in reply to the NOTE? prompt to conclude input.
This method of entering pitch and timing as numerical values has a lot in

common with the very sophisticated Roland MC-4 microcomposer. This
composer also expects a numerical input rather than a performance from a
keyboard. The MC-4 has a number of capabilities not provided in the
'COMPOSITION' program, however! One of these is an editing facility.
The ability to correct mistakes and refine program material is obviously an
essential part of a useful micro-composer. This update we will leave to you
but the MC-4's other advantage, polyphony, is covered by the Oric's PLAY

command. (Polyphony is the playing of more than one note simultan
eously.)

PLAY

The PLAY command on the Orie has two distinct functions. The first is to
enable and disable the various tone (and noise) channels allowing any of the
three tone (or one noise) generators to be used simultaneously. The second
is the shaping of the various envelopes. The syntax of this command is:

PLAY TChannel, NChannel, Envelope, Period
TC refers to the tone channels and NC refers to the noise channels. The
PLAY command enables (i.e. turns on) any combination of the three
channels (for noise or tone) using the values I to 7 as follows for TC and NC.

0 No tone/noise channels on
I Channel I on
2 Channel 2 on
3 Channels I and 2 on
4 Channel 3 on
5 Channels 3 and I on
6 Channels 3 and 2 on
7 Channels 3, 2 and I on

We have been using the MUSIC command without a PLAY command in all our
previous programs. This is because Channel I is a special case and is ON

unless the command PLAY 0, 0, 0, 0 has been given. This does not apply to
Channels 2 or 3 or any of the noise channels. In all programs from now on, a
PLAY command is essential to the operation of the program.

As an example of PLAY in action, run the program 'CHORD' which plays
a C major chord of three notes until you stop the sound by hitting CTRL c.

90 REM*** CHORD ***
99 PLAY 7,0,0,0
100 MUSIC 1,4,1,5
110 MUSIC 2,4,5,5
120 MUSIC3,4,8,S
140 STOP

This program uses PLAY like this:
PLAY 7, 0, 0, 0

The sound of music 101

All three tone channels are enabled (ON), all three noise channels are
disabled (OFF). The chord could be reduced to a two-note chord by
changing the PLAY command to activate only two channels:

Channels

(I +2) PLAY 3, 0, 0, 0

(3+2) PLAY 6, 0, 0, 0

(3+ 1) PLAY 5, 0, 0, 0

Another example of the use of PLAY is 'ANDROIDS', a 'musical piece'
composed especially for this book. PLAY 3, 0, 0, 0 plus two MUSIC statements
were used, making this a duet for Channels I and 2.

5 REM *** ANDROIDS ***
10 A=l
50 REPEAT
60 LETA=A+l
90 READ X,Y
100 PLAY 3,0,0,0
110 MUSIC 1, 1,X,6
120 MUSIC 2,4,Y,5
140 WA1T15
150 UNTIL A=193
160 RESTORE
170 GOT010
1000 DATAl, 8, 8, 8, 1, 8, 8, 8, 1, 8, 8, 8, 1, 8, 8,

8, 1,8,8,8, 1,8,8,8,3,6, 10,5,3,3, 10,3
1010 DATA 1, 10, 8, 10, 1, 10, 8 , 10, 1, 8, 8, 8, 1

,8,8,8,1,8,8,8,1,8,8,8
1020 DATA 3,3, 10,5,3,6, 10,6, 1, 10,8, 10, 1

,10,s,10

\ /

102 The sound of music

1030 DATA 1,8,8,8,1,8,8,8,1,8,8,8,1,8,s
,8,3,3, 10,5,3,3, 10,3

1040 DATA 1,1,8,1,·1,1,8,l,l,l,8,l,l,l,8
, 1, 1, 1,8, 1, 1, 1,8, 1, 1, 1,8, 1, 1, 1,8, 1

1050 DATAl,8,8,8, 1,8,8,8, 1,8,8,8, 1,8,8,
8, 1, 8, 8, 8, 1, 8, 8, 8, 3, 6, 10, 5, 3, 3, 10, 3

1060 DATA 1, 10, 8, 10, 1, 10, 8, 10, 1, 8, 8, 8, 1
,8,8,8, 1,8,8,8, 1,8,8,8

1070 DATA 3, 3, 10, 5, 3, 6, 10, 6, 1, 10, 8, 10, 1
,10,8,10
1080 DATA 1,8,8,8,1,8,8,8,l,8,8,8,l,8,8

,8,3,3, 10,5,3,3, 10,3
1085 DATA 1,1,8,l,1,l,8,l,l,l,8,l,l,l,8

'1, 1, 1, 8, 1, 1, 1, 8, 1, 1, 1, 8, 1, 1, 1, 8, 1
1090 DATA 3, 3, 10, 3, 3, 3, 10, 3, 5, 5, 12, 5, 5,

5,12,5
2000 DATA 6,6,1,6,6,6,1,6,1,l,8,1,1,l,8

' 1
2010 DATA 3,3,10,3,3,3,10,3,5,5,12,5,5,

5,12,5
2020 DATA 6,6,1,6,6,6,1,6,1,1,8,1,1,1,8

' 1
2030 DATA 3,3,10,3,3,3,10,3,5,5,12,5,5,

5, 12, 5
2040 DATA 6,6,1,6,6,6,1,6,1,1,8,1,1,1,8

' l
2050 DATA 3,3,10,3,3,3,10,3,5,5,12,5,5,

5,12,5
2060 DATA 6,6,1,6,6,6,1,6,8,8,~,8,8,8,3

,8

This is another example of the use of DATA statements to hold the musical
information. In this case the DATA consists of pairs of numbers, the first of
which is the bass line, and the second the melody.

Note that lines 1000 to 1040 are identical to lines 1050 to 1095, so you can
save yourself some typing by using CTRL A (the copying function). Also lines
1090 and 2000 can be copied for lines 2010, 2020 and 2030, 2040.

You may encounter another potential problem with DATA statements at
this point, since one error in copying will change the theme for a space
western into avantgarde jazz!

The sound of music 103

Getting back to PLAY, you were probably wondering what the last two
parameters, Envelope and Period, are all about. Those of you familiar with
synthesiser theory may already be accustomed to the concept of a volume
envelope, but for the rest of you we will take a few lines to tell you what they
are all about. A volume envelope is simply a graph of volume against time.
As examples we can take the sound of a snare drum against, say, James
Galway (playing the flute) .

SNARED RUM

Uo Lume

Time

FLUTE

Uolume

Time

Percussion instruments such as drums and marimbas have rapid auacks
(i.e. attain maximum volume quickly) and die away quickly, whereas
flutes, violins, etc., have gentle attacks and sustain their volume for
extended lengths of time (as long as Mr Galway's breath holds out, for
example).

The crew down at Orie have supplied us with a selection of envelopes to
choose from (seven in all) which they hope will serve any occasion. Whilst
this is not entirely true, their system is certainly much easier to use than a

104 The sound of music

system of completely definable envelopes.
Graphs for each envelope value have the shapes given below. Note that 1

and 2 are finite (have a finish point), whilst envelopes 3 to 7 are continuous,
and will sound a note until switched off. Envelope 0 exists, but is exactly the
same as Envelope 1 shown here.

Envelope 1
Cf inlte)

fnve lope 2
(finite)

Envelope 3
(continuous)

Envelope 4
(continuous)

Envelope 5
(continuous)

Envelope 6
(continuous)

Envelope 7
(continuous)

The envelope Period can take values from 0 to 32767 and controls how long
the noise or note takes from start to end in the case of the 'finite' envelopes.
For the continuous envelopes the Period controls the 'length' of the waves
and is best understood by running the program 'ENVELOPE TEST' and
trying some different values for the Period.

5 REM *** ENUELOPE TEST ***
8 CLS
10 INPUT"ENTER TONE CHANNEL 1, 2 or 3" ;T
20 IF T<l OR T>3 THEN 10
30 INPLJT"ENTER THE ENIJELOPE MODE, 0 TO

7" ;M
40 IF M<0 OR M>7 THEN 30

The sound of music 105

50 INPUT"ENTER THE ENUELOPE PERIOD, 0 T
0 32767";P
60 IF P<0 OR P>32767 THEN 50
70 CLS
80 PRINT"CHANNEL"T
90 PRINT"ENUELOPE MODE"M
100 PRINT ENUELOPE PERIOD"P
110 MLJSICT,3,4,0
120 PLAY T,0,M,P
130 PRINT"PRESS RETURN IF SOUND CONTINU

ES"
140 GOT05
505 IF N=G THEN N=l

In line 110 of the program you will notice that the value for volume is set to
0, with MUSIC T, 3, 4, 0. Setting volume equal to 0 gives control over to the
PLAY Envelope parameter. Any other value of volume will cause the
Envelope parameter to be ignored.

For Envelope type 1, Periods around 1000 will give a sharp banjo-type
effect, whereas Periods of approximately 32700 give a sharp attack but slow
decay.

For Envelope type 6, a Period value= 19 gives an interesting machine
like effect. Hours of amusement can be had by all the family, seeing who
can create the daftest sounds using the 'ENVELOPE TEST' program.

Another vital PLAY command you must always have up your sleeve is
PLAY 0, 0, 0, 0, especially if your wonderful musical composition has ended in
an annoying whine that you can't get rid of. Before you resort to the reset
switch or pulling the plug please try the above. Another point to bear in
mind is that the keyboard click will normally stop a persistent note but can
also affect your program, so remember that it can be switched off (and on
again) using CTRL F.

SOUND

SOUND is basically a cruder version of MUSIC without the tone channels
arranged in semitones. It has the added bonus, however, of a noise
generator, making it ideal for the creation of sound effects. The SOUND

command has the format:
SOUND Channel, Pitch, Volume

Channel can take values between 1 and 6. I, 2 and 3 refer to the three tone
generators (as in MUSIC). 4, 5 and 6 specify which tone channel the noise is
mixed into (and comes out of). There is only one noise generator, and it

106 The sound of music

outputs noise into Channel 1, 2 or 3 according to whether 4, 5 or 6 is
specified.

Pitch refers to the pitch of the tone or noise selected (i.e. the frequency).
Unlike Note, Pitch is not arranged in semitones so is less useful for musical
purposes. It can take values from 0 to 65536, where 65535 is very low and
Pitch < 5 attracts dogs. The noise channels can also be selected for varying
Pitches. This is an unusual but useful facility which is best described by
reference to the program 'WAVES'.

.l80 REM*** WAUES ***
200 PLAY 0, 1.•0,0
205 z.-=JNTCRNDC 13*20)
210 FOR I :=0 TO 31 _,

220 SOUND 4, J,7
230 WAIT 2
240 NEXT I
250 GOT0205

As you can hear, the noise gives the impression of changing pitch. (It is not
mixed with tone.) When applied to NOISE, Pitch can take the values 0 to 31,
or any multiple of these values (32 - 63, 64 - 95, etc.), for a complete
'sweep'. Programs of this types are particularly effective when linked to
graphics, but we'll leave it up to you to conjure up images of waves rushing
us a sandy shore!

The final parameter in SOUND is, of course, volume. Volume is identical
to its namesake in MUSIC statements and can take integer values from I to
15. As before a zero value for volume gives the PLAY command envelope
control. Just as with MUSIC, SOUND must always be used with a PLAY

statement. (The exception being Channel I if used for tone only.) In
'WAVES' Channel 1 was selected by using PLAY 0, 1 0, 0 thus disabling the
Channel 1 tone generator, but enabling Channel 1 for noise. The noise was
selected in the SOUND statement by giving the Channel parameter the value
of 4 (SOUND 4, I, 7). Setting the volume equal to 0 allows the seven PLAY

envelopes to be used as described in connection with MUSIC.

Another function of SOUND with PLAY is multiple SOUND statements.
This does not usually create chords as does MUSIC, but can be used to
produce complex effects, such as the dynamic 'TEN MILE ISLAND'.

10 REM*** TEN MILE ISLAND ***
20 FOR P=31 TO 1 STEP -1
40 SOUND 2,P+l00,15
50 SOUND l,P*10,15
60 SOUND 3,P*2+6,10

70 SOUND 4,P,15
100 PLAY.?,1,0,0
150 WAJT50
170 IF P=l THEN EXPLODE
200 NEXT

The sound of music 1 07

This program uses four SOUND statements. The three tone statements
change pitch at differing rates in different ranges while SOUND 4, P, IS selects
Channel 1 noise to sweep at maximum volume level. PLAY7, 1,0,0enablesall
three tone generators but only one channel of noise. The China Crisis
nuclear power station melt-down situation is then terminated with the old
faithful EXPLODE. This brings us back to where we started in our journey
through the sound of music on the Orie microcomputer. The rest is up to
you. The programs given can only provide indications of what is possible
with your versatile and tuneful Orie. We hope you will have many hours of
enjoyment creating music and noises to amaze your friends and annoy your
neighbours.

9 Orie BASIC
keywords

In this section each of the BASIC keywords is considered along with an
example of its usage. Information is provided on the format for use with
each command and the following standard symbols are used throughout:

v represents a numeric variable name
v$ represents a string variable name
i, j represents integers or whole numbers
n represents a floating-point or decimal number (which may be an

integer), or the number resulting from evaluation of a numeric
expression

c represents a conditional logical expression, eg A>B or TRUE

a$ represents a string or string expression
In represents a program line number
addr represents a memory location address

To clarify the graphics commands we will also utilise the following
symbols:

fb the foreground/background parameter (0-3). See Chapter 7 for a full
explanation of the various values.

s this is the character set descriptor which is either 0 (for the standard
set) or 1 (for the alternate set)

x, y represent x and y screen co-ordinates

Other symbols will be used as appropriate. These will be defined within the
body of the keyword definition. The BASIC Token values given are the
decimal values which the Orie uses to store recognised BASIC keywords in
single-byte form in memory.

ABS
BASIC Token: 216

Format: ABS(n)

Returns the absolute magnitude of the number or expression contained in
brackets. For example ABS C-19) is 19. This function can clearly be of use
when it is necessary to ensure a positive solution to a calculation of two

Orie BASIC keywords 109

variables. For example, in the calculation CA-BJ, the difference will
obviously only be positive as long as A is greater than B. However, ABS (A-Bl

will always return a positive value.

10 REM *** ABS ***
20 FOR C=-500 TO 1000 STEP 150
30 PRINT ABSCC),
40 IF C<0 THEN PRINT "BC" ELSE PRINT "A

D"
50 NEXT
60 END

The example program above PRINTS out the date from 500BC in steps of
150. Without ABS this loop would generate negative BC years (e.g.
-350BC).

10 REM *** ABS 2 ***
20 LET A=COSCPIJ
30 IF A=-1 THEN PRINT"COS CP IJ=" ;A
40 IF ABSCA+l J<lE-9 THEN PRINT"COSCP l J=

";A;" WITHIN COMPUTER ACCURACY"
50 PRINT"SO ";A;"=-1"

ABS is also useful in checking equalities since, due to inevitable inaccuracies
in converting decimal to binary, and vice-versa, within the computer,
rounding errors can occur. In the above program the computer calculates
COS(PI) which is -1 but is not stored exactly in the computer's memory.
Using ABS in line 40 checks that the calculated value is correct within the
limits of conversion errors.

Related Keywords: SGN

AND
BASIC Token: 209

Format: i AND i
cANDc

The BASIC keyword AND is a logical condition operator which works in
much the same way as the common English usage of AND. When used to
combine logical expressions it will give an answer of TRUE c = - t l or FALSE (=0)

depending, respectively, on whether both logical expressions are TRUE or
not. It is often used in this way inside an IF statement to ensure that two

11 O Orie BASIC keywords

conditions are satisfied before a statement is executed. The first example
program shows AND in use in this way where the GOTO statement at the end
ofline 40 will not be executed unless both A>12 and A<20.

10 REM *** AND ***
20 CLS:PRINT:PRINT
30 INPUT "INPUT AGE" ; A
40 IF A>12 AND A<20 GOTO 70
50 PRINT "YOU ARE NOT A TEENAGER"
60 END
70 PRINT"YOU ARE A TEENAGER"
80 END

We can also use AND to combine the binary representations of numbers in
the memory. When the command is used in this way each pair of corres
ponding bits along the two numbers in question is treated as a combination
in the same way as above, with the bit in the resultant number being set if
both the bits being combined were set. Thus 12 AND 9 (00001100 AND

00001001) will give 8 (00001000).

Related Keywords: FALSE, NOT, OR, TRUE

ASC
BASIC Token: 236

Format: ASC(a$)

Every character available on your Orie has a corresponding ASCII (pro
nounced as-key) code number. Thus when we create a line such as:

10 P$="M"

the Orie does not actually store the letter M, but its ASCII equivalent (which
in this case is 77).

As the example program below demonstrates, ASC can also be used to
monitor INPUT. Line 40 checks to see whether the first character of the
string you have INPUT falls between ASCII codes 65 and 90. Since codes
65-90 correspond to the capital letters the computer will only PRINT out any
INPUT which starts with a capital letter.

T

10 REM *** ASC ***
20 CL.S
30 INPUT "ANY STRING" ;K$:CLS:PRINT:PRIN

Orie BASIC keywords 111

40 IF ASCCK$))64 AND ASC CK$)(91 THEN P
RINT K$

50 WAIT 100
60 GOT010
70 NEXT
80 END

Since they can function as line delimiters, this type of routine will only
accept",", ": ", '"'", "'", or " " if they are enclosed in double quotes. In
case you are interested ASCII is actually an acronym for American Standard
Code for Information Interchange, and a complete list can be found in
Appendix I.

Related Keywords: CHR$, HEX$, STR$, VAL

ATN
BASIC Token: 229

Format: ATN(n)

This function returns the angle of any known tangent. It should be noted
that the angle returned by the Orie is expressed in radians. The value
returned will always lie within the 'principal range' for TAN of -PVZ to PI12.
Thus ADJ(! l will give pi,~ or 0. 785398162 for the angle whereas any angle of
the form PI Hn*PI (where n is an integer) would also have a TAN of I. This
can be useful in graphics programs for calculating the angle of a line from
the quotient of the differences of the x and y co-ordinates of its end points.

10 REM *** ATN ***
20 HIRES
30 INPUT ''ENDPOINTS, Xl, Yl, X2, Y2" ;Xl, Yl,

X2,Y2
40 CURSET Xl,Yl,3
50 DRAW X2,Y2,l:WAIT 100
60 ANGLE=ATNCCY2-YlJ/(X2-Xl)):TEXT
70 PR I NT"ANGLE IS" ;ANGLE; "RADIANS"
80 PRINT"OR" ;ANGLE*180/Pl ;"DEGREES"
90 END

Related Keywords: cos. PI. SI:-.!. TA:-.!

112 Orie BASIC keywords

CALL
BASIC Token: 191

Format: CALL addr.

This command transfers control to the machine code routine which starts at
memory location addr. Return to BASIC is effected by using the machine
code RTS instruction to end the routine. Using this command can result in
the loss of your program if addr. is specified incorrectly and is not, in fact,
the start of a machine code routine. Refer to the chapter on using machine
code for a fuller appraisal of this command.

Try the following command for an example of the potential danger and
power of this keyword:

CALL DEEK (#FFFC) ••
This will transfer control to the cold start vector, re-starting the Orie as
though it had just been turned on. Similarly CALLing the address returned
by DEEK (#FFFA) will cause the Orie to perform a warm start as though you
had pushed the Oric's reset button. This can be handy to restore the
original characters on exiting a program, or to avoid having to turn the Orie
over.

Related Keywords: DEEK, DOKE, PEEK, POKE, USR

CHAR
BASICToken: 176

Format: CHAR n, s, fb

For Orie owners with an interest in graphics or game playing CHAR is a
godsend, since it enables characters to be positioned anywhere on the HIRES
screen. CHAR prints at the current point position and used in conjunction
with CURMOV and CURSET allows the programmer to place text or user
defined characters to an accuracy of a single point. In the format above n
(32-127) represents the character's ASCII code, s (0 or 1) is the set parameter
which determines whether the standard or alternate set is to be used, and fb
(0-3) is the foreground/background parameter corresponding to one of the
effects listed below. ·

0 Background colour
l Foreground colour
2 Invert colour
3 Null

If you try to use CHAR on anything other than the HIRES screen the computer

Orie BASIC keywords 113

will throw up an error message. It should be noted that the maximum
CURSET co-ordinates are x=234 and y= 192.

D

1 REM***CHAR***
5 HIRES:C=0
10 FORA=0T0150STEP50
20 CURSET40+A,90,3
30 DRAW20,0,2:DRAw0,20,2
40 DRAW-20,0,2:DRAW0,-20,2
50 CllRMOU7,6,3
60 CHAR49+C,0,2
70 C=C+l
80 NEXT

Related Keywords: CURMOV' CURSET, HIRES, PLOT

CHR$
BASIC Token: 237

Format: CHR$(i)

This function is valuable to Orie programmers for a number of reasons.
CHR$(i) returns the character whose code is contained in the brackets. The
number must be an integer in the range 0-255. However the use of this
function extends far beyond the reproduction of the standard character set,
and a quick glance through the complete list of ASCII codes in Appendix 1
should reveal some of the potential of CHR$. For example the program
below uses CHR$ to set the attributes which alter the foreground and
background colours for the remainder of the PRINT statement line.

10 REM*** CHR$(i) ***
20 PRINT CHR$Cl29);
30 PRINT CHR$Cl50);
40 PRINT " RED ON CYAN "
50 END

114 Orie BASIC keywords

A couple of hours' experimentation with this function used in conjunction
with codes in the ranges 0-31 and 128-151 will reveal programming
potential that you may never have expected from your Orie.

Owners of the Orie printer will also find CHR$ valuable when used in
conjunction with the LPRINT command. (See the control codes in Appendix
7.) Used in this way, CHR$ enables characters outside the normal character
set to be printed and offers users the opportunity to alter the print size. CHR$

is also used with standard printers to send control codes for various printer
functions.

Related Keywords: ASC, HEX$, STR$, VAL

CIRCLE
BASIC Token: 173

Format: CIRCLE n, fb

This command draws a circle in HIRES mode whose centre is the current
cursor position. Thus CIRCLE is usually used in conjunction with the CURSET

command. If any part of the CIRCLE leaves the screen, the Orie will throw up
an error message. The first, integer, parameter is the radius in points
(1-99) and fb is 0-3. In the example program, four sets of circles are drawn
at four different cursor positions. The Orie then overdraws with fb set at 0
(background).

10 REM *** CIRCLE ***
20 HIRES
30 FOR A=0 TO 30 STEP 10
~0 FOR B=l TO 0 STEP -1
60 CURSET 80+A,100,0
60 CIRCLE A+9,B
70 NEXT B
80 NEXT A
90 END
Related Keywords: CURMOV' CURSET' DRA w, HIRES, PATTERN

CLEAR
BASIC Token: 189

Format: CLEAR

This command wipes the values of all variables currently in use. The
example program PRINTS five variables, both numeric and string. Line 80

Orie BASIC keywords 115

CLEARS the variables and lines 90 and 100 PRINT the null values (0 for
numeric variables, and the empty or null string for string variables).

1 REM *** CLEAR ***
5 CLS
10 A=5
20 8=10
30 C=20
40 PRINTA,8,C
50 C$="0R"
60 8$="IC"
70 PRINTC$+8$
80 CLEAR
90 PRINTA,8,C
100 PRINTC$+8$

Related keywords: NEW, RUN

CLO AD
BASIC Token: 182

Format: CLOAD "filename" (,S)
CLOAD "" (,S)
CLO AD "filename", J (,S)
CLO AD "filename", V (,S)

This command enables you to load a BASIC program or machine code file
from a cassette. It can take a number of formats:

CLOAD'"'

If the cassette contains only one program (or you are fairly sure about the
location of a particular program) this format can be used since it loads the
first complete program that it finds. Like all CLOAD formats the command
must be accompanied by the optional ,s if the program was CSA VEd in the
slow mode.

CLOAD "filename"

If you are searching for a particular program where the correct filename is
known, the above format can be used in which "filename" is any name of up
to sixteen characters in length. However it is advisable to keep filenames
as brief and easy to remember as possible, because if you add or extract any

116 Orie BASIC keywords

character, even a space, the program will fail to load. If you forget a filename
you must use the first format (CLOAD "")and plough through the entire
cassette until you find the program for which you are searching.

The Orie will produce messages informing you of the current status. It
will display SEARCHING .. on the status line until the specified program is
encountered, and then LOADING. A file name is shown whenever a program
is encountered on tape. Program names are followed by B, to indicate a BASIC
file, and a saved memory block by c for machine code file. Files found but
not to be loaded are noted with the message FOUND .. FILENAME followed by
B or c, and the correct file gives LOADING .. FILENAME (B or c). The Orie will
also display an ERRORS FOUND message if errors were detected on loading,
and will inhibit AUTO-run if this was specified in the CSA VE command.

If you have CSAVEd a block of memory locations under a particular
filename you will have had to specify the beginning and end of that block in
your CSA VE instruction. However, when CLOADing such a file only the file
name is required.

CLOAD can be used for two additional purposes:

CLO AD "filename" ,J

The above format allows you to join a second BASIC program to the end of a
previously loaded program. However it must be stressed that all the line
numbers in the second program must be higher than the largest line number
in the first program. If this is not the case the program will not RUN because
the duplicated line numbers from the second program will co-exist with
their counterparts in the first.

CLO AD "filename", V

This final format allows you to VERIFY that your program (or memory block)
has CSAVEd correctly. By keying in the above statement and loading the
program in the usual way, your original program remains in the Oric's
memory. When the program starts to load the Orie will print VERIFYING
'FILENAME' (or whatever your program is called) at the top of the screen, and
if the loading process is successful you will get a "0 verify errors detected"
message at the current cursor position. This indicates that the program has
been CSAVEd satisfactorily and it is safe to wipe it from memory. (Although
it is always wise to make more than one copy of any program.) If the
program has failed to VERIFY, your original listing is still safe in the Oric's
memory and you will have to try and CLOADNERIFY again. If after a number
of attempts the Orie still fails to come up with a "0 verify errors detected"
report (and you have tried adjusting the volume and tone on your cassette
recorder) you will be forced to conclude that the CSAVEing has been
unsuccessful, and you will have to CSAVE again.

It should be remembered that CSA VE and CLOAD operate in the fast mode

Orie BASIC keywords 117

(baud rate 2400) unless the statement in which they are included ends with
,s, which specifies data transfer in the slow mode (baud rate 300). If a
program has been CSAVEd in the slow mode it can only CLOAD in the slow
mode, so that final .s must be included in the CLOAD statement.

Related keywords: CSA VE, RECALL, STORE

CLS
BASIC Token: 148

Format: CLS

This clears the screen and sets it to the current background colour. As a
general rule, it is advisable to start all text-based programs with a CLS,
unless you have a good reason for wanting the program to remain visible on
the screen. In the example program the Orie clears the screen twice. The
first time in line 20, where the screen is emptied in preparation for the
display, and secondly in 70, after the screen has filled with text. (This is the
same as using CTRL-L.)

l0 REM *** CLS ***
20 PAPER 0 : INK 5 CLS
30 FOR A=0 TO 134
40 PRINT"ORIC",
50 NEXT
60 WAIT 100
70 CLS
80 WAIT 100
90 GOTO 20

Related keywords: HIRES, LORES, TEXT

CONT
BASIC Token: 187

Format: CONT

This direct command is used to restart a program after a break. For
example, while developing a program you will doubtlessly use CTRL-C to
stop the action to examine screen displays or the status of a particular
variable. In many instances you will not want to re-RUN the entire program,
but allow it to continue from the point at which you stopped it. This is
where CONT comes in useful and it is entered as a direct command. Note

118 Orie BASIC keywords

that CONT will not allow you to restart the program if you have altered any
part of the program. It must only be used as a direct command, since if
included in the body of a program CONT will cause the program to crash.

Related keywords: RUN, STOP

cos BASIC Token: 226
Format: COS(n)

Calculates the cosine of angle (n). It is important to remember that the
number in brackets is expressed not in degrees but in radians. To convert
radians to degrees, since 2*PI radians equals 360°, we multiply by 180/PI. The
example below contrasts cosine and SINe curves.

l0 REM *** COSINE AND SINE ***
20 HIRES:PRINT:PRINT:PRINT
30 INPUT "COS OR SIN";A$
40 INPUT "UALUE Cl TO 99J";U
50 CURSET 0,100,3:DRAW 239,0,1
60 FOR A=40960 TO 49079 STEP 40
70 POKE A, INTCRNDC1J*2)+16
80 NEXT
90 FOR A=-PI TO PI STEP 0.02
100 IF A$= II cos II THEN B=COS CA)
110 IF A$=''SIN" THEN B=SINCAJ
120 CURSET A*38+J20,CB*Vl+99,1
130 NEXT
140 PRINT A$ II CURUE" :WAIT 100
150 INPUT "RETAIN PRESENT CURUE CY/NJ";

M$
160 IF M$="Y" THEN 30
170 GOT020

Related keywords: ATN, PI, SIN, TAN

CSAVE

Orie BASIC keywords 119

BASIC Token: 183
Format: CSAVE "filename" (,S)

CSA VE "filename", A addr.,
E addr. (,S)

This command is used to save a program or a series of memory locations on
to cassette. It can take a number of formats:

CSA VE "filename"

This is the most common construction in which "filename" is any name of
up to sixteen characters in length. The use of this instruction will save
the current BASIC program, which will be stored under the specified
filename. Like all CSAVE commands it can be followed by an optional
comma S (,S). This will save the file in the 'slow' mode. Whilst the Orie
CSAVEs reliably in both the slow and fast modes, it is always worth making at
least one copy of any important program in the slow mode.

CSA VE "filename", AUTO

This works in exactly the same way as the first example, except that once the
program has been re-loaded into the Orie, it will RUN AUTOmatically.

It is also possible to save the contents of any sequential block of memory
locations, using A followed by the start address (in hex or decimal), to
specify the beginning of the block, and E to specify the end address. Take
the example of a TEXT or HIRES screen that you might want to preserve. The
CSAVE format for such an operation is as follows (48k, 16k take 32768 from
addresses):

For the HIRES screen:

CSA VE "filename", A40960, E48000

For the TEXT/LORES screen:

CSA VE "filename", A48000, E49119

Related keywords: CLOAD, RECALL, STORE

CURMOV BASIC Token: 171
Format: CURMOV x, y, fb

This command shifts the cursor to a new position in HIRES mode. The
values of x and y are not absolute values, but relative to the current cursor
position. fb is 0, 1, 2, or 3. CURMOV is useful when simulating motion on the

120 Orie BASIC keywords

screen, and indeed in the generation of most graphics routines. The simple
example below shifts a circle across the screen and then uses the fb quantity
to erase it again.

10 REM *** CURMOU ***
20 HIRES: INK 5: PAPER 4
30 FOR C=0 TO 100 STEP 20
40 FOR B=l TO 0 STEP -1
50 CURSET 20,50+C,0
60 FOR A=0 TO 30
70 CIRCLE 10+A,B
80 CURMOU 5,0,0
90 NEXTA
100 NEXTB
110 NEXT C
Related keywords: CIRCLE, CURSET, DRAW, HIRES

CURSET
BASIC Token: 170

Format: CURSET x, y, fb

This determines the absolute x, y position of the cursor in HIRES mode. To
stay within range, the final position of x must be between 0 and 239, whilst y
should be between 0 and 199. As always fb is an integer 0-3. Since the
Oric's CIRCLE command places the centre of the circle at the current cursor
position, the short program below is the perfect demonstration of this
command in action.

10 REM *** CURSET ***
20 HIRES: INK 5:PAPER 4
30 FOR C=0 TO 100 STEP 20
40 FOR B=l TO 0 STEP -1
50 CURSET 20,50+C,0
60 FOR A=0 TO 30
70 CIRCLE 10+A,B

· 90 CURMOU 5,0,0
90 NEXT A
100 NEXT B
110 NEXT C

Related keywords: CIRCLE,CURMOV, DRAW, HIRES

Orie BASIC keywords 121

DATA
BASIC Token: 145

Fonnat: DATA n, n, n, ...
DATA a$, a$, a$, ...

This instruction precedes and defines a list of DATA which, when used in
conjunction with READ, can be READ into variables. The list can take the
form of numbers, words or letters, and if you wish to preserve leading
spaces the DATA must be enclosed in quotes. DATA statements can be
positioned at any point in a program, regardless of where they are actually
READ. If you wish to include a comma in a DATA statement as part of the
DATA item it must be enclosed in quotation marks. It is essential that the
DATA is matched by an appropriate variable - i.e. numeric for numbers,
string for words, letters and symbols. DATA is READ strictly in the order in
which it appears in a given DATA statement. Only on implementing the
RESTORE command can the pointer be returned to the beginning of the DAT A
line. In the example program the DAT A in lines 70 and 90 are READ in line 20
and PRINTed in line 30.

10 REM *** DATA ***
20 FOR I=l TO 2: FOR J=l TO 2:READ A$,

A
30 PRINT A$,A
40 NEXT
50 NEXT
50 END
70 DATA "HELLO", 1, "ALL'', 2
90 DATA ''ORIC", 3, "OWNERS", 4

Related keywords: READ, RESTORE

PEEK
BASIC Token: 231

Fonnat: DEEK(addr.)

This function allows us to examine the value stored in memory in the two
locations at addr and addr+ I. It computes automatically the value
(0--65535) stored in the double byte specified. The standard format that the
6502 processor uses for storing addresses is as two bytes with the first being
the least significant. What DEEK does is to take the value stored in the
second, most significant, byte from addr+ I and multiply it by 256 then add
the value of byte stored at location addr. In the explanation of CALL we saw

122 Orie BASIC keywords

how DEEK could be used to examine addresses stored in the computer's
ROM. As a further example of the use of DEEK we can use DEEK(#A6) to
examine the current value ofHIMEM which is not normally accessible.

Related keywords: CALL, DOKE, PEEK, POKE, USR

DEF
BASIC Token: 184

Format: DEF FNv(z)= exp
DEF USR=addr.

DEF FN is used to DEFine a numeric FUNction. The Orie is equipped with a
number of its own predefined numeric functions, but the DEF FN command
allows you to build your own defined functions into a program. Essentially
DEF FN can be used to avoid reproducing a line which performs the same
calculation each time that particular calculation is required. In the format
line above, v (a single-letter variable name) completes the name by which
the function can be recalled (using the FN command), later in the program.
The z in brackets is the name which is used for the argument in the function
and is known as the dummy variable. The (exp) following the equals sign
represents an expression using z (the dummy variable). This is the calcul
ation which will be carried out upon the argument passed by the FN call. In
the example below the loop determines the value of A which is used as the
argument in the function call.

10 REM *** DEF ***
20 DEF FN MC2)=2/6*2
30 FOR A=l0 TO 100 STEP 10
40 PRINTFN MCA)
50 NEXT
DEF USR is used to DEFine the starting address for a useR supplied machine
code routine. This is discussed in the section on USR.

10 REM *** DEF USR ***
20 DEF USR=5120
30 FOR 1=0 TO 17
40 READ A:POKE 5120+1,A
50 NEXT
60 DATA 162,5,189,12,20,157,1281 187,202

,208,247,96
70 DATA 0,#48,#45,#4C,#4C,#4F

Orie BASIC keywords 123

80 REPEAT
90 DUMMY=USRC0)
100 WAIT 50
110 FOR I= 48001 TO 48006
120 POKE I, 32: WAIT 10
130 NEXT
140 WAIT 50
150 UNTIL FALSE
Related keywords: FN, USR

DIM
BASIC Token: 147

Format: DIM v(i, j, ...)
DIM v%(i, j, ...)
DIM v$(i, j, ...)

The DIM instruction is used to DIMension arrays. Arrays allow us to store
floating point numbers, integers or strings as elements in a one dimensional
array (a list), or a multi-dimensional array. A simple list of six integer
numbers, for example, has space allocated in memory for ·storage with the
instruction:

DIMA%(5)

The array variable (A in this case) must be a single letter for all arrays. The
array A%(5) has six elements, numbered 0 to 5, which can be assigned values
with statements such as:

LET A%(3)=276

String arrays are designated by a $ sign after the variable name, e.g. 0$(3),

and floating-point numeric arrays have just the single-letter variable name,
such as T(8).

The Orie will allow the use of arrays with 11 or less elements (subscripts 0
to 10), without the use of a DIM statement. This is done simply by assigning
a value to one of the elements of the array. The use of an instruction such as
LET NC5)=6 will automatically create an array N(IO) and assign the value 6 to
the sixth element N(S). If we wish to use arrays that have a greater number of
elements then a DIM statement is required. Arrays are usually DIMensioned
at the beginning of a program, and once a particular array has been created
using DIM it may not be changed at any subsequent point in the program, or
a REDIM'D ARRAY error is produced. The following program uses DIM to set

124 Orie BASIC keywords

up the string array D$(7), assigns a value to each element using READ and
DATA, and then displays a list of the contents.

\0 REM *** DIM ***
20 DIM D$C7J
30 FOR I=l TO 7
40 READ D$ CI J
50 NEXT
60 DATA "ORIC. II' "CAL II' "FOR II' "BET I"'"

DIM II' "ALPHA"' "EXAMPLE "
70 FOR A=l TO 6
80 FOR B=A TO 7
90 IF D$CAJ<D$(8) THEN 110
100 T$=D$CAJ:D$(A)=D$CBJ:D$CBJ=T$
110 NEXT
120 NEXT
130 FOR I=l TO 7
140 PR I NT D$ C IJ ;
150 NEXT
160 END

Arrays with more than one dimension may be used. In the example
following, a two dimensional array of integers, N%(3,4), is DIMensioned,
values assigned to the elements and then the array is printed out as a 4
column by 5 row table.

10 REM *** DIM ***
20 DIM NX(3,4)
30 FOR A=0 TO 3
40 FOR 8=0 TO 4
50 NxCA, BJ=A*l0+8
60 NEXT
70 NEXT
80 FOR K=0 TO 4
90 FOR J=0 TO 3
100 PRINT Nx CJ, K),
110 NEXT
120 PRINT
130 NEXT
140 END

Orie BASIC keywords 125

String arrays can have each element up to the maximum string length of255
characters. The maximum number ofDIMensions allowed in an array is 255
also, and since you can have multi-dimensional arrays, the practical limit to
the number of array elements you can play around with is determined by
your Oric's memory. Remember that arrays eat memory quickly, and do
not use unnecessary arrays.

Related keywords: None

DOKE
BASIC Token: 138

Format: DOKE addr., i

This command is used to store a double byte, or integer, value (in the range
0-65535) in memory. The first parameter is the address of the first byte of
the two bytes in which we wish to store the value, and the second integer
parameter in the format is the value to be stored. The format in which it is
stored is the normal 6502 lo-byte, hi-byte representation (see machine code
chapter). If we wished to store 770 in the memory we could use the
command:

DOKE 30000,770

This would have the effect of storing 2 in location 30000 and 3 in location
30001since770 is 3*256+2.

Related keywords: CALL, DEEK, PEEK, POKE, USR

DRAW
BASIC Token: 172

Format: DRAWx,y,fb

This is one of the Oric's graphics commands which can only be used in the
HIRES mode. DRAW is used in conjunction with CURMOV and CURSET, and
DRA ws a solid line from the current cursor position to a point x points along
the x-axis, and y points along the y-axis. Thus the x and y co-ordinates
specified in a DRAW statement are not absolute (i.e. they do not represent
the literal co-ordinates of the Oric's screen), but are relative to the current
cursor position. Thusx must be in the range 0-199 and yin the range 0-239.
Note that if your DRA w statement takes the line off the screen an error
message will be produced. As usual, the fb code falls between 0 and 3 (see
individual entry for CHAR).

Whilst DRAW normally produces a solid line on the screen, by coupling it

'

126 Orie BASIC keywords

with PATTERN the line can be converted into dots and dashes of a specified
density. (See PATTERN).

For a dramatic demonstration of DRAW in action, see the example
program for HIRES.

t REM *** DRAW ***
5 H1RES:PAPER6:INK1
10 FORA=10T0230STEP10
20 CURSETA,0,0
30 DRAW0, 199, 1
35 WAIT20 :PING
40 NEXT
50 FORY=10T0190STEP10
60 CURSET0,Y;0
70 DRAW239,0,1
75 WAIT20 :p ING
80 NEXT

Related keywords: CIRCLE, CURMOV, CURSET, HIRES, PATTERN

EDIT
BASIC Token: 129

Format: EDITln

This instruction enables you to bring the line specified by lo down below
the current cursor position for editing. Whilst it is possible to edit a
particular line on screen after you have LISTed it, since any insertions must
be keyed-in on lines above or below the line which is being edited, it is
considerably easier to be sure of what you are adding when the line is free of
the rest of the program.

In either instance, the cursor movement keys are used to position the
cursor at the beginning of the line to be altered and CTRL-A to copy those
sections of line that you wish to preserve. The insertion of characters is fully
explained in Chapter 2, but essentially it involves keying-in the required
characters in the correct position on the line above or below the edited line,
reversing the movement of the cursor to re-enter the line at the desired
point, and then copying any other correct portions until all is finished,
when RETURN is pressed.

Related keywords: LIST

Orie BASIC keywords 127

END
BASIC Token: 128

Format: END

This command can be used to stop a program if you want to avoid the
"BREAK IN In" message which the Orie gives when the STOP command is
used. Whilst it is usually placed in the last statement of a program, there are
a number of circumstances in which its use can allow a program to crash
with grace when incorrect data is input. The example program demons
trates END being used for this purpose.

10 REM *** END ***
20 REPEAT
30 INPUT "NUMBER";NUM
40 IF NUM<=0 THEN END
50 PRINT"NATURAL LOG OF'' ;NUM; "IS" ;LNCNU

MJ
60 UNTIL FALSE

Related keywords: STOP

EXP BASIC Token: 225
Format: EXP(n)

This is another of the Oric's many mathematical functions. EXP(nl returns e
(=2. 7183) to the power of n. It is often used in conjunction with LN (loge),
since EXP(LN(nJJ gives the antilog value.

10 REM *** EXP ***
20 HIRES
30 CURSET 30,30,0
40 DRAW 0,150,l:DRAW 190,0,1
50 FOR N=0 TO 5 STEP .025
60 X=N*40+30
70 Y=180-EXPCNJ
80 CURSET X,1,1
90 NEXT
100 END

Related keywords: DJ, LOG

128 Orie BASIC keywords

EXPLODE BASIC Token: 164
Format: EXPLODE

This is one of a number of pre-defined sounds available on the Orie. They
are primarily of value in arcade-type games, but can also be used as prompts
in more serious programs. Creative use of delays (WAIT) can also be used to
extend their potential. WAIT delays must be used ifrepeated EXPLODES are
required.

10 REM *** EXPLODE ***
20 HIRES: PAPER 3 : INK 4
30 FOR 8=0 TO 95 STEP 4
40 CLJRSET 120,2+8,0
50 GOSLJ8 200
60 CLJRSET 120,190-8,0
.70 GOSLJ8 200
80 NEXT
90 EXPLODE
100 FOR K=l TO 10
110 PAPER 4:JNK 3
120 WAIT K
130 PAPER 3:INK 4
140 WAIT K
150 NEXT
160 WAIT 200
170 GOTO 20
180 END
200 FOR I=l TO 3
210 CHAR 100,1,l:CLJRMOV 6,0,0
220 NEXT
230 RETURN
Related keywords: PING, SHOOT, ZAP

FALSE BASIC Token: 248
Format: FALSE

If you use your Orie to deal with data, there are certain circumstances under
which it will take a decision as to whether something is TRUE or FALSE.

1 REM *** FALSE ***
10 FOR A=ll TO 20

Orie BASIC keywords 129

20 IF A<10 THEN PRINT TRUE ELSE PRINT F
ALSE

30 NEXT
40 END

The result of the above program is unspectacular, but in the Oric's terms
quite understandable. Since the 10 in line 20 can never be equal to A (as the
loop starts at 11), the Orie simply prints out ten zeros. This is because 0 is
the computer's representation of FALSE. Thus whilst it is possible to replace
FALSE with zero in a program, in a complex jungle of code this function can
serve to clarify a listing. Thus:

l0 REM *** FALSE 2 ***
20 A=10 :B=l
30 REPEAT
40 PRINT CA>BJ :B=B+l
50 UNTIL FALSE
will print out nine -1 's (which is the Oric's representation of TRUE), before
the statement in line 40 that A is greater than B becomes untrue when A=B

(i.e. 10= 10). From this point on the Orie will churn out an endless line of
zeros. So whilst the FALSE in line 50 could be replaced by 0 without making
any difference to the running of the program, it should be clear that the use
of FALSE considerably clarifies what is actually going on in the program.

Related keywords: TRUE

FILL
BASIC Token: 175

Format: FILL ii, i2, i3

This is another of the Oric's graphics commands. It enables you to FILL

specific locations on the HIRES screen with a particular value. The Oric's
screen is composed of 200 lines with 40 locations per line. Following the
above command format, FILL fills i1 lines of i2 bytes with the value ofh at the
current cursor position. Thus i1 is in the range 1to200, i2 is in the range 1 to
40 and i3 must be between 0 and 255.

FILL is usually used to colour different sections of the Oric's screen with
specific colours. Its role in the suite of graphics commands available on the

130 Orie BASIC keywords

Orie is fully explained in Chapter 7, whilst the example program under the
individual entry for HIRES shows FILL in action.

l REM *** FILL ***
5 PAPER0
10 HIRES:PRINTCHR$Cl7J
20 REPEAT
30 X=INTCRNDC1J*231)
40 Y=INTCRNDC1J*175+7J
50 A=INTCRNDC1J*C230-XJ/6+1J
60 D=INTCRNDC1J*C182-YJ+8J
70 CURSETX+6,Y-7,0:FJLL 0+7,A,16
80 CLJRSETX,Y,0:FILL O,A,C17+RNDC1)*7J
90 UNTIL FALSE

Related keywords: CURSET, CURMOV, HIRES

FN BASIC Token: 196
Format: FN v(n)

FN followed by a variable name can only be used in a program if it has been
preceded by DEF FN, since it refers to a function which has been defined
earlier in the program. For a full description of user-defined functions refer
to Chapter 4 and the individual entry for DEF. The following example shows
FN in action, converting radians into degrees.

10 REM *** FN ***
20 DEF FNDEGCRJ=R*l80/PI
30 REPEAT
40 INPUT "RADIANS";A
50 PRINT 11 =11 ;FNDEGCAJ;"DEGREES 11

60 PRINT
70 UNTIL A=999
80 END

Related keywords: DEF

Orie BASIC keywords 131

FOR ... TO ... (STEP)
NEXT

BASIC Token: 141 ... 195 ... (203)

144
Format: FOR v=n TO n (STEP n)

NEXTv

Much of a computer's activity revolves around the repetition of simple
tasks. In BASIC the construction of loops is one of the means by which such
repetition can be effectively implemented. FOR •.• NEXT loops are the
commonest implementations of such a construction.

A FOR ... NEXT loop forces the computer to execute the statements
contained within it a specified number of times. For example:

10 FORA=l T03
20 PRINT A
30 NEXT A

The above loop will PRINT out the numbers 1, 2, 3. Let's follow it through
and see how it works. First time through the loop the computer takes the
variable A and assigns it the value I which it then PRINTS in line 20. It then
continues until it reaches the word NEXT, and then returns to line 10. This
process is then repeated, with the value of A being incremented by one with
each pass of the loop until A=3. At this point the looping is complete and the
program moves on and executes the line following the NEXT statement.

In the above example, the variable is incremented in steps of 1, which will
always be the case unless the program specifies otherwise. You can use the
optional word STEP to alter the STEP size.

10 FOR X=5 TO 20 STEP 5
20PRINTX
30NEXT

The above loop would PRINT out 5, 10, 15, 20. You may have noticed that in
line 30 the name of the variable has been omitted following NEXT. Orie
BASIC permits such an omission, but for the sake of clarity it is usually wise
to leave the variable name in, especially if your program contains loops
within loops.

It is possible for a STEP size to be negative. Thus:

10 FOR A=20 TO 5 STEP -5
20PRINT A
30NEXTA

132 Orie BASIC keywords

is an acceptable construction. The STEP may also be non-integer. We can
use:

10 FOR F=l TO 2 STEP .2
20PRINTF
30NEXTF

The start, finish and STEP values may all be non-integer, variables, or
calculated expressions.

S A=S6: C=Pl/2
10FORX=2*4 TO A/3 STEPC
20PRINTX
30NEXTX

Related keywords: REPEAT, UNTIL

FRE BASIC Token: 218
Format: FRE(0)

FRE'"'

This instruction has two formats for two distinct functions. In the com
mand formats above, the first example returns the number of memory bytes
still available at any given moment in a program's development.

The second format example forces what is known as "garbage collec
tion". This is simply a means of tidying up the storage of strings (starting
from just below HIMEM and working down). This is useful if you are
reassigning strings which quite conceivably will be shorter when they take
their new value. However, whilst their value has been re-established, the
amount of memory given over to the new and shorter string will remain the
same (so the Orie is effectively storing redundant spaces). If the new strings
are longer, they will have to be stored elsewhere, leaving the entire space
originally allocated to the old value empty. By using FRE"" you effectively
shunt the stored strings together and do away with the wasted space.

The example program below demonstrates this "garbage collection" at
work:

10 REM *** FRE ***
20 PRlNTFREC0J
30 A$="A" :8$= 11 8 11

40 REPEAT
50 A$=A$+A$:8$=8$+A$
60 UNTIL LENCA$)=128

70 PR I NTFRE C0 J
80 PRINT"NOW WE TIDI UP"
90 A$="" :8$=""
100 PR!NTFREC'"'J
Related keywords: None

Orie BASIC keywords 133

GET
BASIC Token: 190

Format: GET v$
GETv

'Press any key to continue' (or a variation on it), is one of the most common
instructions facing users of interactive programs. Well, if the program is
written in Orie BASIC it's more than likely that GET (followed by a string
variable) is holding up the program until you are ready to go on. It has some
similarities with INPUT. GET stops the program and will not allow the Orie to
continue until a key is pressed. In the statement:

100GET A$

the character of the first key pressed will now be stored in A$. However,
unlike INPUT, GET does not require RETURN, but automatically continues to
the next line of the program as soon as a key is pressed. Thus GET A$ will
only allow the value of a single character to be stored in A$. GET followed by
a numeric variable name can be used to GET a single digit from the
keyboard, but will give an error if a non-numeric key is pressed.

As this example program demonstrates, GET is useful in menu-driven
programs which only require single key entry:

1 REM;+:;+::l<GET***
5 HIRES :C=RNDC 1 H:6+1: INKC :PAPER0
10 FORA=l0 TO 50 STEP 10
20 CURSET50+CA*2J,96,3
30 C!RCLE10+A,2
40 NEXT
50 PRINT"PRESS ANY KEY TO RUN AGAIN"
60 GETA$
70 GOTOS

GET differs from its sister command, KEY$, in that whilst the former actually
stops the program until a key is pressed, the latter scans for input but passes
on to the next line whether or not a key is pressed.

Related keywords: INPUT, KEY$

134 Orie BASIC keywords

GOSUB
BASIC Token: 155

Format: GOSUB ln
GOSUBv

This is one of the most valuable commands in BASIC. GOSUB is similar to
GOTO in as much as it forces the Orie to execute instructions from a specified
line number instead of following the program's line numbers in sequence.
However, unlike GOTO this instruction stores a return address in the
computer's memory stack. This means that GOSUB In will cause the program
to jump to line number In and execute all subsequent operations until a
RETURN statement is encountered. At this point the program will RETURN to
the statement following the line containing the original GOSUB. The line
number in the GOSUB expression may also be a variable or the result of
evaluating an expression. The parts of a program which are accessed (or
'called') by a GOSUB statement are known as subroutines.

The destination of RETURN can only be altered with the use of the POP

command (see POP in this section).
An intelligent use of subroutines can greatly enhance the efficiency and

clarity of a program.

1 REM***GDSUB***
10 CLS:C=0
20 PR1NT"ENTER A NUMBER <22"
30 1NPUTN
40 1FN>30THENGOSU8250
50 lFC= 1THEN10
.60 GOSUB100
70 PRINTF:GOTD310
100 REM***SUBROUT1NE1***
110 I FN <> 1THEN140
120 F=l
130 GOT0180
140 N=N-1
150 GOSU8100
160 F=F*CN+lJ
170 N=N+l
180 RETURN
190 REM***ENDSUB***
200 GOT0310
250 REM***SUBROUTJNE 2***
260 CLS:C=l

Orie BASIC keywords 135

270 PRINT"OBE'r' JNSTRLJCTIONS2 TRI AGAIN.

280 WAIT300
290 RETURN
300 REM***ENDSUB***
310 END

Related keywords: GOTO, ON, RETURN

GOTO
BASIC Token: 151

Format: GOTO In
GOTOv

Normally the control sequence of a BASIC program is via the numbered
statements - ie from the lowest to the highest. The use of GOTO interrupts
this sequence and directs control to the line number specified.

It is traditional to stress that GOTO should be used with care, as it is a
particularly powerful command. GOTO is more often than not used to
'patch' a poorly structured program. Under such circumstances programs
become difficult to follow and errors tough to trace. In short, if you find that
you are using a large number of GOTOs then your program is almost
certainly badly conceived.

Orie BASIC allows the line number to which the GOTO directs control to be
a variable. For example:

60GOTOA
70GOTOA+B

GOTO can also be used as a direct command. For example, GOTO 90 executes
the program from line 90, retaining any values previously assigned to
variables. In this respect it differs from RUN 90 which clears the variables
before execution.

10 REM***GOTO***
20 CLS :GOTO 40
30 END
40 GOTO 1000
50 PRINT"PROGRAM ".

'
60 GOT090
70 PR1NT"A POOR ,, .

'
80 GOTO 200

136 Orie BASIC keywords

90 PRINT"DEMONSTRATES ";
100 GOTO 70
200 PRINT"USE
210 GOTO 1020

II•

300 PRJNT"GOT02"
310 GOTO 30

'

1000 PRJNT:PRJNT:PRINT"THIS ";
1010 GOTO 50
1020 PRINT"OF II;

1030 GOTO 300

Related keywords: GOSUB, ON

GRAB
BASIC Token: 159

Format: GRAB

A large proportion of the Oric's memory area is reserved for the HIRES

screen. If you are developing a lengthy BASIC program which does not
require use of the HIRES, it is possible to regain the HIRES dedicated memory
area with the use of GRAB, which is normally entered as a direct command.
(GRAB can also be usedin the body of a program when extra memory may be
needed for the storage of arrays.)

Once this command has been activated you will be unable to utilise the
Oric's HIRES screen until the section of memory in question (bytes #9800 to
#B400 on the 48K Orie and #1800 to #3400on the 16K machine) has been
turned over to the HIRES mode once again. This can be achieved by
activating RELEASE which is entered as a direct command.

1 REM***GRAB***
5 CLS
10 PRINT"HOW MUCH MEMORI?" : PRINTFREC0

20 PRINT"NOW WE GRAB SOME MORE SPACE"
30 GRAB
50 PRINTFREC0)
60 PRINT "NOW WE'LL GET RID OF IT AGAIN

70 RELEASE
80 PR I NTFREC 0 J
30 PRINT"SEE ?"

Related keywords: HIRES, RELEASE

HEX$

Orie BASIC keywords 137

BASIC Token: 228
Format: HEX$(i)

The hexadecimal number system is one much favoured by computers.
Unlike the decimal system with which the majority of humans are familiar
which is based on 10's, the hexadecimal system operates with a base of 16
digits:

0, 1,2,3,4,5,6, 7 ,8,9,A,B,C,D,E,F

A-Fin the hexadecimal system are equal to 10-15 in decimal. HEX$(i) allows
us to convert the decimal integer in brackets into its hexadecimal (hex for
short) equivalent. Thus HEX$(IS) will return #F (the hash sign simply
stands for hexadecimal). The decimal number in brackets can be any whole
number between 0 (#0) and 65535 (#FFFF). The Orie will throw up a
'BAD SUBSCRIPT' message if you try to convert negative numbers or
fractions.

Whilst it is unlikely that you will use this function unless you are fairly
well acquainted with the hexadecimal system, it is worth understanding
how to convert a hex number into its decimal equivalent. Since the decimal
system uses the position of each digit to represent powers of 10
(eg. 522=(5*102)+(2*101)+(2*1)), you will not be surprised to learn that
the hexadecimal system follows much the same principle except that the
position of the digits in a hex number indicate powers of 16. Thus:

46E=(4*162)+(6*161)+(14*l)=decimal 1134

Related keywords: STR$, VAL

HIMEM
BASIC Token: 158

Format: HIMEM addr

This command gives you the capacity to reserve a portion of your com
puter's memory to store machine code programs.

Normally, the Orie splits up the available memory space as efficiently as
possible to store your programs, their variables and whatever memory
space is required for graphics displays. Under these conditions the user has
no control over the manner in which the machine divides up its memory.
However, when using machine code subroutines the programmer must
allocate a section of memory exclusively for the storage of the machine code
so that it will be unaffected by the storage of the BASIC code determined by
the computer.

138 Orie BASIC keywords

Thus HIMEM sets the address of the highest memory location available to
that portion of a program written in Orie BASIC. HIMEM should be set at the
very beginning of a program, and the command should always be used with
a great deal of care.

10 REM *** HJMEM ***
20 PRINT "HlMEM JS CURRENTLY" ;DEEKC#A6J
30 GRAB
40 PRINT "AFTER GRAB IT IS" ;DEEKC#A6J
50 RELEASE
60 PRINT "AFTER RELEASE IT'S" ;DEEKC#A6J
70 HIMEM 3eJ00
80 PRJNT"OR WE CAN SET IT TO ANY UALUE

I.E. II '

90 PRINTDEEKC#A6J

Related keywords: GRAB, RELEASE

HIRES
BASIC Token: 162

Format: HIRES

This command converts the Oric's TEXT or LORES screens into the high
resolution screen. Itis this screen which most effectively utilises the Oric's
sophisticated graphics facilities. When the command is activated the first
twenty-four lines o(the screen change into a black background of 240x 200
points. The bottom three lines remain in the normal TEXT mode which the
computer uses for messages in the usual way.

Like all graphics screens, HIRES consumes a great deal of the Oric's
memory, which can reclaimed for a BASIC program with the use of the GRAB

command. However, if this facility has been used you will be unable to
operate in the HIRES mode until you use RELEASE to make the memory
available for HIRES once again.

When you are developing a program which uses HIRES you will be unable
to LIST or EDIT the program in the normal way since it will not print on the
HIRES screen. Each time you RUN the program you will have to return to the
TEXT screen before you can examine your listing.

The commands listed below up and including FILL will only operate
when the Orie is in the HIRES mode, whilst the program which follows puts a
number of them to good use:

Orie BASIC keywords 139

l0 HIRES
20 CURSET 14,10,3
30 DRAW 0,180,1 :DRAW 220,0,1
40 CURMOU -210,-10,3:DRAW -19,19,1
50 FOR B=l TO 6
60 READ H: GOSUB 100
70 NEXT 8
80 GOSUB 400:END
90 REM DRAW BAR FOR CHART
100 X=CB*5+2l*6-5: CURSET X,190,3
110 DRAW 0,-H, 1 :DRAW 10,-10,1 :DRAW 12,0

, 1 :DRAW -10, 10, 1
120 CURSEt X+23, 180-H,3:DRAW 0,H+10, 1
140 CURSET X, 190-H,3
150 FILL H,2,8+16
160 CURSETX+13,190-H,3:~ILL H, 1, 16
200 RETURN
300 DATA 100,75,55,124,150,155
400 REM PRINT ON TEXT WITH CHAR
410 A$="SALES OF ORIC COMPANION"
420 FOR I= 1 TO LENCA$J
430 CUR SET 1*6+40, 10, 3
440 CHAR ASCCMID$(A$,I)J,0, 1
450 NEXT
460 PATTERN 51 :CURSET 40,20,3:DRAW 150,

0, 1
470 RETURN

Related keywords: CHAR, CIRCLE, CURMOV, CURSET, DRAW, FILL, LORES,

TEXT, PAPER, INK

IF ... THEN ... (ELSE)
BASIC Token: 153, 201, 200

Format: IF c THEN statements ELSE statement

The IF ... THEN ... (ELSE) format is what is known as a decision structure. It
is used to test conditions and control the Oric's subsequent actions. The

140 Orie BASIC keywords

ELSE is enclosed in brackets above (although not when it is actually used in a
program), because it is an optional element in this format. The "state
ments" can be any BASIC instruction sequence provided it will fit into the
Oric's maximum line length. IF the condition c is TRUE, the statements
following THEN are executed. Control then passes to the next line, unless
ELSE has been used, in which case the statements following ELSE are
executed.

This decision structure is one of the most powerful elements of BASIC and
its use is most satisfactorily clarified by example.

1 REM***lF/THEN/ELSE
5 CLS
10 lNPUT"ENTER !OUR NAME";N$
20 CLS
30 lNPUT"ARE IOU MALE OR FEMALECM/FJ";S

$

40 CLS
50 PRlNT"HELLO ";
60 1FS$="M''THEN PRlNT "MR '' ;N$ELSE PRlN

T"MRS ";N$
70 END

GOSUB must be used in standard format with an IF ... THEN ... ELSE

construct. GOTO may be omitted, and just the line number given, and GOTO

may replace THEN.

Related keywords: AND, GOTO, NOT, OR, ON

INK
BASIC Token: 178

Format: INKi

This instruction operates in both the high and low resolution modes. It sets
the foreground colour of the entire screen according to the value of i, whose
possible values are listed in the colour table below:

0 BLACK
1 RED
2 GREEN
3 YELLOW
4 BLUE
S MAGENTA
6 CYAN
7 WHITE

Orie BASIC keywords 141

INK changes the colour of everything 'written' on the screen and cannot be
used to print individual characters in different colours (see the graphics
chapter and the individual entry for CHR$ for an explanation of how this can
be done).

l REM***1NK***
10 HIRES
20 A=0:B=0
30 FORU=0T025
40 B=B+l:A=A+3
50 l FB> 7THEN8=0
60 JNKB
70 CURSET110,100,3
80 CJRCLEA,1
90 NEXTU
100 GOT020

Related keywords: LORES, HIRES, PAPER, TEXT, CHR$

INPUT
BASIC Token: 146

Format: INPUT v, v$, ...
INPUT "prompt", v, v$, ...

This allows the computer to receive information from the outside world.
The command stops the execution of a program and the Orie will not
continue until the user has INPUT a word/letter or number. There are a
number of ways in which the command can be formatted. For example:

10INPUTN$

will stop the program after placing a question mark prompt on the screen.
The user must now key-in the appropriate INPUT and press the RETURN key.
However, it is unlikely that anyone other than the programmer will
understand exactly what form of data is required by the program, so
obviously some sort of explanatory message is required. This can be
achieved in one of two ways:

or else:

10 PRINT@, 13,10; "WHAT IS YOUR NAME"
20INPUTN$

10 INPUT "WHAT IS YOUR NAME";N$

142 Orie BASIC keywords

The only advantage of the first construction is that it enables you to position
the message anywhere on the screen (provided you own an Orie Vl.l),
whereas the second example PRINTS the prompt AT the current cursor
position.

Related keywords: GET, KEY$

INT
BASIC Token: 215

Format: INT(n)

The purpose of INT is to convert any number which has a decimal part into a
whole number. It should be noted that the number which is given by the use
of INT is always less than the actual value supplied. For example:

10 Z=INT(47.677)
20PRINTZ

will PRINT out 47. However, you need to be careful when dealing with
negative values. For example:

will, of course, PRINT -1 l.

Related keywords: None

KEV$

10 X=INT(-10.56)
20PRINTX

BASIC Token: 241
Format: v$=KEY$

KEY$ is one of the means by which the Orie receives information from the
outside world. Like GET it seeks a keyboard response, but will allow the
program to continue whether or not a key is pressed.

Since KEY$ contains the value of whatever key is being pressed, it is
valuable in arcade-type games (e.g. allowing the cursor keys to be used to
control 'movement' on the screen). As the ex;imple below demonstrates, it
is also useful when a particular response is required from the user of the
program:

' REM***KEY$***
5 CLS:X=2
10 PRJNT"USE '2' TO MOUE LEFT,' M' FOR R

lGHT & 'S' TD STOP"

Orie BASIC keywords 143

20 REPEAT
30 U$=KEY$
40 I FU$="2" THENX=X-3 :PLOTX+3, 10, II

50 IFU$="M"THENX=X+3:PLOTX-3,10,"
60 IFX<2THENX=2
70 IFX>35THENX=35
80 PLOTX,10,"<*>"
90 UNTILU$="S"
100 PRINT"EXAMPLE TERMINATED"
Related keywords: GET, INPUT

BASIC Token: 244

II

II

LEFT$ Format: v$=LEFT$(a$, i)

Like MID$ and RIGHT$ tills command allows specific characters to be
extracted from a string. It takes the following format:

LEFT$(a$,i)

in which a$ is any previously defined string variable and i is equal to the
number of consecutive characters that you want extracted from the lefthand
side of that string. Thus:

10 REM *** LEFT$ ***
20 A$="0RIC LEFT$''
30 FOR I=l TO LENCA$)
40 8$=LEFT$CA$,l)
50 PRINTS$
60 NEXT I
70 END

will extract and PRINT all the possible LEFT$s from "ORIC LEFT$". If it is in
excess of the number of characters in the string the Orie will simply return
the entire string.

Related keywords: RIGHT$, MID$, LEN

144 Orie BASIC keywords

LEN
BASIC Token: 233

Format: LEN(a$)

LEN simply returns the number of characters in a particular string. For
example:

10 J=LEN ("NUMBER")
20PRINT J

would PRINT out 6, because there are six letters in the string 'NUMBER'.

10 H=LEN ("PRINT OUT")
20PRINTH

would PRINT out 9, because this time the string is made up of eight letters
and a space.

This function is useful when, for example, you wish to format a screen
display which is to contain strings INPUT by the user of the program whose
length is, of course, unknown. LEN can also be used in a FOR ... NEXT
construction, when a task must be performed for each letter of a string.
Thus:

10 FOR A= 1 TO LEN(X$)

is an acceptable construction. The empty or null string, "", has a LENgth of
0.

Related keywords: MID$, RIGHT$

LET
BASIC Token: 150

Format: LET: v=n
LETv$=a$

Throughout this book we have tried to stress that it is often not enough to
produce programs that RUN, but that they should also be readable to an
outsider. In Orie BASIC, LET is an optional function, but its use can serve to
clarify a listing.

LET is used in the assignment of variables. For example:

10LET A=l0

This means that in a given memory location which shall henceforth be
known as A, the value 10 will be held. What we have created is a curious
beast known as a constant variable - a variable whose value remains the

Orie BASIC keywords 145

same. This said, we can alter the value of variable A with a construction like
this:

20 LET A=A + 10

This may seem to be nonsense in mathematical terms, but as far as BASIC is
concerned we are simply saying that to the memory location A which
initially held the value of 10 we must now add a further 10. Thus A now
holds the value of 20(10+10). Orie BASIC, however, does allow us to omit
LET from a statement:

30A=A+l0

but, to labour the point, its inclusion does make for a clear and readable
listing.

Related keywords: None

LIST
BASIC Token: 188

Format: LIST i - i

This command is important for every stage of a program's development,
since it enables the programmer to LIST a line, a series of lines or the entire
program. Let's look at the various formats:

LIST

On its own, LIST will PRINT out the entire program on to the screen. Since
any reasonable sized program will be considerably more than a single
screenful of text, you will want to stop e,ach section of program as it scrolls
up the screen. To do this you simply use the space bar at the bottom of the
keyboard. This will stop the scrolling which can be reactivated by pressing
the space bar again once you have examined the relevant section.

LIST40

This will PRINT line 40 on to the screen.

LIST 40-80

This will PRINT lines 40--80 (inclusive) on to the screen.

Related keywords: EDIT, LUST

146 Orie BASIC keywords

LLIST
BASIC Token: 142

Format: LLIST i - i

This behaves in exactly the same way as the LIST command, except that
instead of PRINTing the specified lines on to the screen it lists them on to the
printer.

Related keywords: LPRINT, LIST

LN
BASIC Token: 224

Format: LN(n)

This is one of the Oric's valuable mathematical functions. It returns what
are known as natural logarithms or, more properly, logarithms to the base
e.

LN(n) is the natural logarithm of n. The antilog is EXP(LN(n)). Natural log.
operations can be used, if appropriate, as with common logs. For example:

EXP(LN(x)+ LN(y))

gives the product of x and y.

Related keywords: EXP, LOG

LOG
BASIC Token: 232

Format: LOG(n)

This is a mathematical function which cakulates the common logarithm to
the base 10. Then in the format must be greater than 0 otherwise LOG(n)
would be an imaginary number~ See any calculus text for details of such
numbers, if you're interested, but for now just note that the Orie can't
handle them.

1 REM:t::t::t:LOG:t::t::t:
5 CLS
10 1NPUT"ENTER A NUMBER Cl-10J";N
20 FORA=JT010
30 C=RNDC1J*9
40 PRJNT"THE LOG OF II ;N*A
50 PR1NT" JS ";LOGCN*AJ
60 NEXT

Related keywords: EXP, LN

Orie BASIC keywords 147

LORES
BASIC Token: 137

Format: LORES 0
LORES I

This command allows access to two of the Oric's four screens. It has two
formats (LORES 0 and LORES 1), one for each screen, although both of the
low-resolution screens have exactly the same format: twenty-seven lines of
forty characters.

LORES 0 is similar to the TEXT screen except that it generates a black
screen upon which white characters can be printed. The normal use of a
PRINT statement will cause the entire screen area to scroll into the TEXT

screen. This means that characters must be positioned by PRINT cw or PLOT.

LORES 1 operates exactly the same way except that it prints the alternaie
character set to the screen. The example program demonstrates the use of
both screens.

l REM***LORES***
10 LORES0:C=0
20 PLOT2,24,"THE CHARACTER SET IN LORES
0"
30 FORA=32T0126
40 X=RNDC1)*36+1 :Y=RNDC1)*22+1
50 C$=CHR$CA)
60 PLOTX,Y,C$
70 WAIT50
80 NEXT
90 IFC=1THENWAIT500:CLS:END
100 PRINT: PRINT"AND NOW THE SET IN LOR

ES 1 II :WAIT300
110 GO SUB 1 30
120 GOT030
130 CLS:LORESl :C=l
140 RETURN

Related keywords: TEXT, HIRES

148 Orie BASIC keywords

LPRINT
BASIC Token: 143

Format: LPRINTa$
LPRINTi

This command works exactly the same as a PRINT statement except that it is
used to send the print items to a printer. However, it is not possible to use
an LPRINT@ statement. Used vvith the control codes listed in Appendix 1,
LPRINT can be used to regulate the output to a variety of printers. It is
possible to alter the line length of the printer output by using POKE #256,i

where i is the required line length.

Related keywords: CHR$, LLIST, PRINT

MID$
BASIC Token: 246

Format: MID$(a$, ii, ii)

Like RIGHT$ and LEFT$, this function is used to extract specified characters
from a predefined string. The name of the command is actually somewhat
misleading, since it enables programmers to extract characters from any
part of the string (not just the middle). The extracted characters constitute
what is known as a substring, which starts at character i1 and is i2 characters
in length. If i2 characters starting at i1 is greater than the length of the string,
the program will simply print out the entire string from the point specified
by i 1• If no such point as i 1 exists within a string, then nothing is returned.
Without i2 the command will simply return the rest of the string from the
point specified by i1•

In the example program below, MID$ is used to get rid of the leading
spaces in a numerical print out.

Orie BASIC keywords 149

10 REM *** MIDS ***
20 AS=" ORIC "
30 IF ASCCA$J=32 THEN A$=MI0$(A$,2J: GO

TO 30
40 IF ASCCRIGHTSCAS, 1JJ=32 THEN A$=MIDS

rAs,1,LENCASJ-l): GOTO 40
50 PRINT"*" ;AS;"*"

Related keywords: LEFT$, RIGHT$

MUSIC
BASIC Token: 168

Format: MUSIC c, o, n, v
c=channel 0- 3
o=octave0-7
n=note 1-12
v=volume 0-15

This is one of the Oric's three major sound commands, and as its name
implies it is used to generate musical output. The utilisation of the Oric's
sound commands is relatively complex, and thus it is important that if you
intend to take full advantage of these sophisticated facilities you should
refer to the sound chapter. However it is possible here to outline the
parameters of the command.

There are four variables involved in a MUSIC statement and the command
itself is usually coupled with PLAY (which creates the "shape" of the sound
and determines the number of sound channels in operation at any one
time). As laid out in the command format above, c sets the tone channel to
be used, whilst o determines which of the eight available octaves is to be
used (0--7). The third variable, n, determines which of the twelve notes in a
given octave will be generated (1-12). The last parameter, v, determines the
volume of the sound produced (0--15).

Unless you have a good reason for wanting the last note of your musical
masterpiece to drone on for eternity, you must close down all the tone
channels by using the statement PLAY 0,0,0,0 to silence the computer.

l REM***MUSIC***
10 FOR0=0T06
20 FORN=lT012
30 MUSICl,O,N,10
40 PLAY3,0,7,0
50 WAI T30

150 Orie BASIC keywords

60 NEXTN
70 NEXTO
80 PLAY0,0,0,0
90 EXPLODE
Related keywords: PLAY, SOUND

NEW
BASIC Token: 193

Format: NEW

This command deletes the current BASIC program and variables from the
Oric's memory. It is advisable to enter NEW before starting any new
program to ensure that it is unaffected by any superfluous instructions from
a previous program.

Related keywords: RUN

NOT
BASIC Token: 202

Format: · NOT i
NOTc

The keyword NOT is a logical condition operator which works in much the
same way as the common English usage of the word. It reverses the value of
TRUE (-1) or FALSE (0) which the Orie assigns to a logical expression. For
example it can be used as part of an IF . .. THEN statement:

IF NO~ (condition) THEN (action)

It is easy to see how this sort of construction could play a valuable role in a
games program. For example:

IF NOT DEAD THEN GOTO (next stage of game)

where DEAD is a flag which determines whether or NOT the program should
enter the endgame sequence.

The condition can also take the format NOT i or NOT c in which i is an
integer and c is a logical expression. Thus it can take its place in the
following type of constructions:

IF NOT X THEN X=6

If x was 0 (FALSE) the condition NOT xis TRUE, and x will be se! to 6. NOT 7

would give the answer 248 since, for the purposes of operation on integers

Orie BASIC keywords 151

we would consider the individual bits. If a bit was set in the original integer
then it will NOT be set in the answer and vice versa. Thus 7 (00000111) will
become 248 (11111000).

l REM:t::t::t:NOT:t::t::t:
5. CLS:A=l
10 lNPUT"THINK OF AN INTEGER" ;N
20 REPEAT
25 A=A+l
30 lFNOTCA=NJTHENPRlNTA
40 WA1T20:CLS
50 UNTlLA=N
60 PRlNTA:EXPLODE

Related keywords: AND, IF, OR

ON
BASIC Token: 180

Format: ON i GOTO lnl> ln2 •••

ON i GOSUB ln1, ln2 • ••

This command must be paired with either GOTO or GOSUB and facilitates
multiple branching in a program. It is commonly used as a control structure
in menu-driven programs in which the user is given a number of options
whose consequences are handled by different parts of the program. For
example, consider the program lines

l REM**-*ON-***
5 CLS
10 lNPUT"PLEASE ENTER 1,2 OR 3";N
20 ON N GOTO 100,200,300
50 REM
100 PRINT"LINE 100 FROM N=l" :GOT010
150 REM
200 PRlNT"LINE 200 FROM N=2" :GOT010
250 REM
300 PRlNT"LlNE 300 FROM N=3" :GOT010

If the user enters 3 in line 10, the program will GOTO the third line number
(300) specified in line 20. If N=2 then the program will jump to the second
line number, and so on.

152 Orie BASIC keywords

If N is greater than the number of line numbers specified then the
program will simply continue on to the statement which follows the one
containing the ON ... GOTO statement. However, negative INPUT will throw
up an error report. Either way, INPUT checks are clearly required. Non
integer values are automatically rounded.

ON ... GOSUB works in exactly the same way, except that since the
program is jumping to a subroutine a RETURN statement is required, at
which the program will jump back to the line following the ON .. . GOSUB

statement.

Related keywords: GOSUB, GOTO, RETURN

OR
BASIC Token: 2Ht

Format: i OR i
cORc

This is another of the Oric's logical condition operators. In order to
understand how this condition operates, it is worth examining the con
sequences of this keyword in a tabular form:

TRUE OR TRUE=TRUE
TRUE OR FALSE= TRUE
FALSE OR TRUE=TRUE
FALSE OR FALSE= FALSE

It should be clear that the OR operator has a similar effect to the 'either ...
or ... 'construction in English whereby an answer of TRUE (-1) is returned
if either of the two conditions in question is correct.

OR can also be used as a "bit-wise" operator on two integers in a similar
manner to AND, with each pair of corresponding bits being considered
jointly. Thus 13 (00001101) OR 24 (00010100) is 29 (00011101).

Test this with the following command:

PRINT 13 OR 24

which should return 29.
When used as part of an IF ... THEN construction, OR has the following

type of format:

IF (A=0) OR (B= 1) THEN 300

If either condition is TRUE, the program will jump to line 300.

1 REM*:UOR***
5 CLS

Orie BASIC keywords 153

10 INPUT"ENTER AGE OF HUSBAND'' ;HA
20 INPUT"ENTER AGE OF WIFE" ;WA
30 INPUT"ENTER ANNUAL INCOME OF HUSBAND

"; IH
40 INPUT"ENTER ANNUAL INCOME OF WIFE"; I

w
50 1FCHA>21 AND IH>~5000J OR CWA>21 AND
IW>=5000JTHEN100
60 PRINT"NOT ELIGIBLE FOR LOAN"
70 END
100 PRJNT"LOAN AIJAILABLE"

Related keywords: AND, NOT, FALSE, TRUE

PAPER BASIC Token: 177
Format: PAPER i

This sets the background colour of the Oric's entire screen. It operates in t
both high and low resolution modes, but cannot be used to set the
background of individual sections of screen. PAPER must be coupled with i,
giving one of the colour codes:

0 BLACK
I RED
2 GREEN
3 YELLOW
4 BLUE
S MAGENTA
6 CYAN
7 WHITE

To set the background colour of individual sections of screen see the
individual entries for CHR$ and FILL and the graphics chapter.

l REM***PAPER***
10 HIRES:INK0
20 A=0:8=0
30 FORIJ=0T025
40 A=A+ 1 :B=B+3

154 Orie BASIC keywords

50 l FA> 7THENA=0
60 PAPERA:WA1T20
70 CURSET110,100,3
80 ClRCLEB,1
90 NEXTU
100 GOT020

Related keywords: INK

PATTERN BASIC Token: 174
Format: PATTERN i

This is another of the Oric's HIRES graphics commands. Since it is used in
conjunction with either DRAW or CIRCLE it can only be used in the high
resolution mode.

Normally both DRAW and CIRCLE create a solid line display. However,
PATTERN can be introduced to break the lines created by these commands
into dots or dashes, the pattern of which is determined by the integer i
following PATTERN, in the range 0-255. The example program below
demonstrates the full range of PATTERN'S influence:

10 REM***PATTERN***
20 HlRES:INK0:PAPER1
30 FOR A=l TO 65
40 PATTERN 170-A
50 DRAW230,0,1
60 CURMOV-230,3,0
70 NEXT

Related keywords: HIRES, ORA w' CIRCLE

PEEK BASIC Token: 238
Format: PEEK (addr.)

PEEK examines the memory location specified by addr. and returns the
value contained in that location. The value returned will be between 0 and
255. For example, PEEK (#256) will return the current printer line length on
your Orie (80). The value of this function becomes clear when it is realised
that by POKEing this location (see individual entry for POKE), with a value

Orie BASIC keywords 155

other than 80 will alter the line length. For a fuller explanation of the PEEK

function see Chapter 5.

1 REM***PEEK***
10 REPEAT
20 PR1NTCHR$C20)
30 GOSUB100
40 UNTJLFALSE
50 END
100 IF PEEKC48039J=83THENPR1NT"CAPS ON"

ELSEPRJNT"CAPS OFF"
110 RETURN

Related keywords: CALL, DEEK, DOKE, POKE, USR

Pl
BASIC Token: 238

Format: PI

The trigonometric constant. Returns the value of 3.14159265. In the short
example program below Pl is used in the calculation of the area of a circle.

l REM***P1***
5 CLS
!0 FORU=1T05
20 R=RND C 1 J:i:30
30 fl=P 1* C R"2 J
40 PRJNT" 1F CIRCLE RADlUS="R;
50 PRJNT"THEN ITS AREA IS"A
60 PRINT:PRJNT
70 NEXT

PING
BASIC Token: 166

Format: PING

This is another of the Oric's pre-defined sounds which can be used as a
prompt or as a feature in games programs. Multiple PINGS can only be used
effectively when coupled with the WAIT command. It can be sampled by

156 Orie BASIC keywords

using CTRL-G (or by attempting to key more than eighty characters into a
single statement).

1 REM***PlNG***
100 PAPERl :JNK0:CLS:PR1NT
110 PR1NTCHR$C140J"CHOOSE ONE OF THE FO

i..LOWING:"
120 PRlNT:PRJNT:PRINT
130 PRINTCHR$Cl47J"l DIARY":PJNG
140 WAl T30
150 PR1NTCHR$Cl48J"2 HOROSCOPE":PING
155 WA1T50
160 PRINTCHR$C146J"3 CALENDAR" :PING

Related keywords: EXPLODE, SHOOT, ZAP

PLAY BASIC Token: 169
Format: PLAY t, s, e, d

t=tone channel 0-7
s=sound channel 0-7
e=envelope 0-7
d=duration 0-32767

This is one of the Oric's rather complex sound commands which, once you
get used to them, offer a music/sound potential well in advance of the
machine's competitors. However, the commands are a little difficult to
grasp, particularly if you're not musically minded, so it is well worth
spending some time working your way through Chapter 7. For the present
we will restrict ourselves to clarifying the format of the command.

Your Orie is endowed with three sound/tone channels and PLAY is the
command which determines the combination of these channels. In terms of
the command format at the top of the page, t (tone) ands (sound) determine
which channels are activated (0--7). The effects of the combination of
channels is really only comprehensible· after a little experimentation, but
the following chart will be of some use for future reference. The column on
the left represents the value oft or s, whilst the righthand column tells you
which combination of channels are activated by this value.

Orie BASIC keywords 157

tors channel combination
0 no channels
I 1
2 2
3 1and2
4 3
s 1and3
6 2and3
7 1, 2 and 3

PLAY's third parameter, e, is probably the most difficult to understand,
since it is the integer which determines the "shape" of the sound which the
Orie produces. Once again the sound chapter should be consulted for a full
explanation of this feature. However, variable e (0-7) when set at 1 or 2
produces what are known as sound envelopes of a fixed length, whilst all
other settings generate continuous sounds of various types. The example
program below will hopefully clarify the effect of the different PLAY set
tings. Finally d (0-32767) sets the duration of the sound envelope.

When using either MUSIC or SOUND at some point in the course of your
program you will want to turn off the sound channels, which can be
achieved by the statement PLAY 0,0,0,0.

l REM***PLAY***
5 CLS
10 CLS:PRINT:PRJNT
20 INPLJT"ENTER NUMBER C0-7J FDR SOUND S

HAPE" ;E
30 JFE<0 DR E>7THEN20
40 INPUT"ENTER A NUMBER C0-65535J FDR D

URAT JON" ;O
50 PRINT"THIS IS SOUND ENVELOPE ";E;" W

ITH A 11 ;O; II DURATION"
60 SOUNDl,1500,0
70 PLAYl,0,E,D
80 PRJNT"PRESS ANY KEY TO STOP PLAY''
90 GETA$: GOT05

Related keywords: MUSIC, SOUND

158 Orie BASIC keywords

PLOT
BASIC Token: 135

Format: PLOT x, y, n
PLOTx,y, a$

This command is used to position characters on the low resolution screens.
In the first of the command formats given above, n must be a numeric

expression that will return the appropriate ASCII character represented by
that expression. Since this includes not just the standard printed character
set but also the attribute characters (see Chapter 7 and Appendix 1), PLOT

can be used in the production ofinteresting screen displays. For example:

PLOT 11, 11, 12: PLOT 13, 11, "QRIC"

will produce a flashing "ORIC'' on your screen. Experimentation should
reveal the potential of the command used in this way, and the graphics
chapter offers a full explanation of how the attribute characters can most
effectively be exploited.

If PLOT is used in the second format, it will position the string expression
on the screen. For both numeric and-string expressions the co-ordinates are
in the ranges 0-39 (x) and 0-26 (y). With x=0 and y=0, the PLOT position is
the top lefthand character position of the screen. The command will operate
in the TEXT, LORES 0 and LORES 1 modes, but will not function on the HIRES

screen.

1 REM***PLOT***
5 CLS:LORES0
10 PLOT2,2,"PLOTTING IN LORES 0 MOOE"
20 FORA=lT023
30 X=RNDC1J;j(33+4:Y=RNDC1J*22+3
40 PLOTX,Y,A:PLOTX+2,Y,"ORIC"
50 WAIT50 :NEXT

Related keywords: CHAR, PRINT

Orie BASIC keywords 159

BASIC Token: 243
POINT Format: POINT (x,y)

This command is used to test whether the point on the HIRES screen
specified by the co-ordinates which follow it (x in the range 0 to 239, y
between 0 and 199) holds a background or foreground colour. If the point
contains a background colour, POINT returns 0, and if it contains a
foreground colour POINT returns - 1.

POINT is often used in games programs to detect collisions, and the
example program below offers a simple demonstration of the command in
this role.

t REM***POINT***
5 HIRES:PAPER4:INK0
10 FOR8=5T0175
20 CURSET200,8,2:CHAR124,0,2
30 NEXTB
40 A=5
50 REPEAT
60 A=A+B
70 CURSE TA, 90, 0
80 CHAR127,0,1 :WAITS
90 CHAR127,0,0
100 C=POINTCA+ll,90)
120 UNTILC=-1
130 EXPLODE

Related keywords: HIRES

POKE
BASIC Token: 185

Format: POKE addr, i

This instruction allows programmers to place the value of i into the mem
ory location represented by the address addr. The address must fall into the
range 0-65535, and since any given location is made up of eight binary digits
the value of i falls into the range0-255. Both addr. and the valueofi maybe
specified in either decimal or hexadecimal notation.

POKE enables you to enter machine-code routines and tinker around with

160 Orie BASIC keywords

your Oric's system variables, and, although the effects of an aimless POKE

may initially appear somewhat traumatic, as far as it is possible to tell no
permanent harm can be done to your machine.

As an example of the power of this command, try the following program
to alter the status line display.

1 el REM -*** POKE -***
20 FOR A=l TO 8
30 POKE 46599+A,A
40 WAJT 100
50 NEXT
60 WAJT 1000
70 CALL DEEK UtFFFA J

Or this one to display an "A" in the (normally inaccessible) top left-hand
corner of the screen:

POKE 48000,65

Related keywords: DEEK, DOKE, PEEK

POP
BASIC Token: 134

Format: POP

This instruction operates in exactly the same way for GOSUB .. . RETURN as
PULL does for a REPEAT ... UNTIL loop. In many respects POP should be
considered as a last option command, since it forces a program to jump out
of a nested subroutine, which should never be necessary in a propedy
planned and structured program.

Normally when a subroutine is called the RETURN address is stored in the
area of memory known as the stack. With each new subroutine a further
address is added to the stack and as each subroutine encounters a RETURN it
retrieves its return address on a 'last in first out' basis. POP is the only
legitimate means of circumventing this operation.

Imagine a program which calls subroutine 1 which in turn calls sub
routine 2. When a specific set of conditions have been met in subroutine 2
under certain circumstances it may be necessary to jump back to the main
body of the program rather than return to subroutine 1. POP enables you to
do this, since it bypasses the first return address on the Oric's stack and in
this case retrieves the return address of subroutine 1, which will return
control to the main body of the program. The example program below
demonstrates such a procedure in action.

Orie BASIC keywords 161

10 REM *** POP ***
20 FOR I =-5 TO 5:PRINT l '
30 GOSUB 100
40 PRINT:NEXT
50 END
100 GOSUB 200
110 PRINT X
120 RETURN
200 IF 1>0 THEN X=LOGCIJ ELSE POP
210 RETURN

POS
BASIC Token: 219

Format: POS(0)
POS(l)

This instruction returns the current horizontal cursor position when used to
detect such a position generated by a straightforward PRINT statement. It
cannot be used to return positions generated by PLOT or PRINT<ii. POS (0)

returns the cursor position on the screen, POS (I) returns the horizontal
position of the printhead when LPRINTing.

l REM***POS***
10 DIM AC4,2J
15 REPEAT
20 FOR K=l TO 4
30 FOR J= lTO 2
40 ACK,Jl=K*RNDCll+J
50 NEXT
60 NEXT:CLS
70 FOR K=l TO 3:PRJNT:NEXT
80 PR I NT AC l , 1 l ;
'30 REPEAT :PRINT" "; '.LJNTIL POSC0J=15
100 PRINTAC1,2J

Related keywords: PRINT

162 Orie BASIC kf)YWOrds

PRINT
BASIC Token: 186

Format: PRINT plist
PRINT@ x,y; plist
plist=list of print items

PRINT instructions affect the current cursor position on screen, which
defines the point from which any printing will start. PRINT (which may
be abbreviated to ?) is followed by a list of items to be displayed on
screen. PRINT(a' x,y; defines a print co-ordinate position of the TEXT and
LORES screens.

PRINT may be used on its own, with no PRINT items following, and a
blank line is displayed on screen. The PRINT list can consist of numbers,
numeric variables, expressions, strings and string expressions which may
follow directly after each other, or be separated by commas and semi
colons. The PRINT functions TAB and SPC can also be included (see their
individual entries in this section).

Semi-colons after PRINT items leave the PRINT position set dire~tly after
the last character printed, so that the next item to be printed will follow
on. If the semi-colon is at the end of a PRINT list, any subsequent PRINT
statement will continue PRINTing on the same line. When there is no
ambiguity in the sequence of PRINT items the semi-colon may be omitted,
and each item will be placed on screen directly after the preceding (but
remember that numbers have leading and trailing spaces). Thus it is
possible to have a line PRINT AX"TIMES"23, with no semi-colons between
the items, as the Orie will interpret the items correctly, whilst we cannot
say PRINT AXI2, with the intention of displaying the value stored in
variable AX, then 1, then 2, since the Orie will interpret it as an instruc
tion to PRINT the value of a variable called AXI2. Since the effect is the
same, it is advisable to use a semi-colon unless you are certain the Orie
will not misinterpret the sequence you place in the line.

A comma between PRINT items causes the cursor position to be moved
to the start of the next PRINT field. The Orie screen is divided up into
five fields, each eight PRINT positions wide, and a comma moves the
cursor at least one space to the right, and then to the beginning of the
next field, thus ensuring at least one space between each item formatted
this way. Multiple commas may be used to shift over more than one field
to the right.

Control characters and attributes may be placed in PRINT statements
using CHR$(i), where i is an ASCII character code. The same instruction may
be used to place other characters on the TEXT and LORES screen, but control

Orie BASIC keywords 163

codes and attributes are non-printing, that is they do not PRINT anything on
the screen, but occupy a character position in the screen memory map, so
that a space appears on screen.

Many examples of the use of PRINT statements appear throughout this
handbook. The program below demonstrates a variety of PRINT formats.

10 REM *** PR1NT ***
20 8=2
30 A$="TO BE OR NOT TO BE"
40 PR1NT 1, 2, 3
50 PRJNT A$
60 PRJNT 2*8 OR NOT 2*8
/0 PRJNT
80 PRJNT 1 ; 2; 3

PRINT(<1 instructions have the form PRINT(<1 x,y; where x is the column
number (0 to 39) across the screen left to right, and y is the row number (0 to
27) of PRINT lines down the screen. The two values are separated by a
comma, and must be followed by a semi-colon before the list of items to be
PRINTed, which follows the same formats as for PRINT. Variables or
calculated expressions may be used for x and y, and they will be rounded
down if they are non-integer. An ILLEGAL QUANTITY error will occur if the
values are outside the correct range.

The example program draws a circle, using SIN and cos to calculate the x
and y positions for PRINT(i1.

10 REM *** PR1NT @ ***
20 R=13:XC=20:YC=13:CLS
30 FOR A=0 TO 2*P1 STEP PJ/50
40 X=XC+COSCAJ*R
50 Y=YC+SJNCAJ*R
60 PRJNT @X,Y; "O"
70 NEXT

Related keywords: LPRINT' SPC, TAB

PULL
BASIC Token: 136

Format: PULL

This instruction operates in exactly the same way for a REPEAT . . . UNTIL
loop as POP does for GOSUB ... RETURN. If the truth be told, both POP and

164 Orie BASIC keywords

PULL must be regarded as "patching" commands. If your program has been
properly planned and structured, it should never be necessary to jump out
of either a loop or a subroutine. However, no one is perfect, and PULL does
give you the chance to extricate yourself from a tricky situation.

Let's assume you have programmed a REPEAT loop to print out the
numbers between -5 and 10, along with a countdown of each number to
zero (see example program below). We use PULL to exit the inner loop in the
case of negative numbers since decrementing will obviously never make
them zero. (Of course this is a somewhat artificial example, since it would
obviously be simpler to use the IF statement to avoid entering the REPEAT

loop.)

10 REM *** PULL ***
20 A=9
30 REPEAT
40 B=A
50 REPEAT
60 PRINT B;
70 B=B-1
80 IF B<0 THEN PULL :GOTO 100
90 UNTIL 8=0
100 A=A-1
110 PRINT
120 UNTIL A=-5

Orie BASIC keywords 165

'3 8 7 6 5 4 3 2 1
8 ? 6 5 4 3 2 1
? 6 5 4 3 2 1
6 5 4 3 2 1
5 4 3 2 1
4 3 2 1
3 2 1
2 1
1
0

-1
-2
-3
-4

Related keywords: POP, REPEAT, UNTIL

READ
BASIC Token: 149

Format: READ v,v, •..
READ v$,v$, ...

This is always used with DATA statements, and it is important to ensure that
READ is followed by an appropriate variable (v in the case of numeric data
and v$ when READing string DATA). The command READS the DATA state
ments sequentially, and must never be programmed to READ more DATA
than is actually contained within the statements (this will result in an OUT OF
DATA error message). Thus the positioning of a READ statement is critical,
whilst DATA statements can be placed at any point in a program.

When DATA statements have been exhausted, the computer's internal
"pointer" can be returned to the beginning of the DATA line with the use of
the RESTORE command.

1 REM***READ***
5 CLS
10 FORA=1T05
20 REAOU,U$
30 PLOTU,10,U$
40 NEXT
50 DATA5,MAN,9,WOMAN,15,CHJLD,21,DOG,25

,HOUSE
Related keywords: DATA, READ, RESTORE

166 Orie BASIC keywords

RECALL BASIC Token: 131
Format: RECALL v, "filename" (,S)

RECALL v$, "filename" (,S)
RECALL v%, "filename" (,S)

This instruction is the partner to STORE, which stores an array in a cassette
tape file. RECALL will load back from tape the contents of an array previously
saved on tape using STORE, and the procedure is the same as when using
CLOAD. The array to store the RECALLed array must have been dimensioned
prior to using RECALL, or an OUT OF DATA error occurs. The array variable
must be the same type as that of the original array (integer, string or real)
and identical size or greater.

Slow speed data transmission from tape can be specified by adding a
comma followed by an S (,S) to the command. This must also have been
used by the STORE instruction. See STORE for an example program.

Related keywords: CLO AD, CSA VE, DIM, STORE

RELEASE BASICToken: 160
Format: RELEASE

When the GRAB command has been used to liberate that area of memory
allocated for the HIRES screen for the development of a lengthy BASIC pro
gram, this screen cannot be used again until the Oric's memory organisa
tion is returned to normal by the use of RELEASE. This instruction
reallocates the bytes #9800 to #B400 (on the 48K Orie) or bytes# 1800 to
#3400 (on the 16K machine).

Related keywords: HIRES, RELEASE, GRAB

REM BASIC Token: 157
Format: REM

REM statements are essential tools for all serious programmers whatever
their experience, although their inclusion or otherwise has no effect on the
way a program actually works. REM is short for REMark or REMinder and a
REM statement enables the programmer to add a running commentary to a
program which will explain the function of particular sections of code. The

Orie BASIC keywords 167

Orie ignores everything following a REM statement for the duration of the
line in which it is included.

It is arguable that very short programs will always be self-explanatory,
and thus not require REM statements. However, we recommend that you get
into the habit of using REMs from the very beginning, even if you are just
keying in a few lines of code. There is always the tendency to consider any
program in progress as self-explanatory while you are actually working on
it, but when you come to try to sort it out later you will save yourself hours if
you have taken the trouble to include even a schematic commentary of
REMs. The instruction can be replaced by an apostrophe if you get tired of
keying in REM each time you need a reminder.

10 REM *** REM ***
20 ' THIS WORKS AS A REM AS WELL
30 REM USE CHR$C96) TO GET t IN LINES

Related keywords: None

REPEAT
BASIC Token: 139

Format: REPEAT

When coupled with UNTIL this command creates a loop which forces the
Orie to repeat a series of instructions until a specified condition has been
met. Unlike FOR . .. NEXT loops there is no counter to be incremented, and
if one is required it must be programmed into the loop (as in the example
below).

If you commit the cardinal sin of jumping out of a REPEAT .. . UNTIL loop
with a GOTO statement (a practice much frowned upon by all but the most
free-thinking programmers), it is imperative that you return to the loop or
eventually suffer the consequences of a corrupted stack. The only way in
which a REPEAT . .. UNTIL loop may be exited before completion is by
utilising the PULL command (see individual entry in this section).

l REM***Rt~EAT/UNTIL****
5 HIRES:JNK4:PAPER0
10 A=0
20 REPEAT
40 CLJRSET55+A,110-A,3
50 DRAW2+A,0,1 :ORAW0,A+A,1
55 A=A+l
60 LINT I LA> 60
Related keywords: FOR, NEXT, PULL, UNTIL

168 Orie BASIC keywords

RESTORE
BASIC Token: 154·~.

Format: RESTORE

There are occasions when DATA must be READ more than once in the course
of a single program. However, each time an individual item of DATA is READ

by the Orie the computer's internal 'pointer' is moved along the statement
until the DATA is exhausted. In order that the pointer is returned to the
beginning of the statement for the information to be READ again, RESTORE

must be used if an 'OUT OF DATA' error report is to be avoided. Orie BASIC

does not permit restoration to a specific line number.

1 REM***RESTORE***
5 H1RES:PAPER1:INK0
10 C=l
20 FORA=1T05
25 1FC=0THENWAIT20:SHOOT
30 RE ADU
40 CLJRSETU,40,3
50 FORB=1T018STEP3
60 CIRCLEB,C
70 NEXTB
80 NEXTA
90 IFC=0THENEND
100 RESTORE
110 C=0
120 GOT020
130 DATA28,73,118,163,208

Related keywords: DATA, READ

RETURN BASIC Token: 156
Format: RETURN

This instruction must be used as the final statement of any subroutine. It
tells the Orie that the computer has reached the end of a subroutine and
must RETURN to the line following the statement containing the original
GOSUB instructions.

The destination of RETURN can only be altered with the use of the POP

command.

l REM***RETURN***
10 CLS

Orie BASIC keywords 169

20 PRINT"KEI IN RADIUS OF CIRCLE"
30 1NPUTR
40 C=2*P1*R:2=C
50 GOSUB200
60 CLS
70 PRINT"C1RCUMFERENCE
80 A=PI*CR"2) :2=A
90 GOSUB200
100 PRINT"AREA IS " ;2
110 GOT0300

IS ";~

200 REM**SUBROUTINE TO CORRECT TO
TWO DECIMAL PLACES**

210 Z=INTC100*CZ+.005JJ
220 2=2/100
230 RETURN
240 REM**END OF SUBROUTINE**
300 END
Related keywords: GOSUB, POP

RIGHT$
BASIC Token: 245

Format: RIGHT$(a$,i)

Like MID$ and LEFT$ this command extracts specific characters from a
string. It takes the following format:

RIGHT$(a$,i)

in which a$ is any pre-defined string variable and i is equal to the number of
consecutive characters that you want extracted from the right-hand side of
that string. Thus:

\0 REM *** RIGHT$ ***
20 A$="0RIC RIGHT$"
30 FOR I=l TO LENCA$J
40 8$=RIGHT$CA$,IJ
50 PRINT SPCCLENCA$J~LENC8$JJ;8$
60 NEXT I
70 END

170 Orie BASIC keywords

will extract the specified number of characters right to left from "ORIC

RIGHT$". If i is in excess of the total number of characters in the specified
string the Orie will simply return the entire string.

Related keywords: LEFT$, MID$

RND
BASIC Token: 223

Format: RND(i)

Without RND, a lot of computer games would be extremely predictable,
since it provides the Oric's built-in random factor. The random number
generator is only a pseudo-random function, in that it produces a sequence
of numbers between 0 (which it may equal) and 1 (which it never quite gets
to).

RND performs different functions according to the value of the parameter
within the brackets. The normal usage is RND(I), to give a random number
between 0 and 1. This is not of great value in itself, as perhaps you will see if
you enter PRINT RND(I) as a direct command a few times. The_ random
numbers we wish to generate need to be within a certain range, so that we
can use RND to simulate the throw of a dice or an x co-ordinate between 3
and 27, or suchlike.

To do this, we multiply the result of RND(l) by the appropriate factor,
which will produce a number between, for example, 0 and 5.999999 if we
multiplied by 6. Adding 1 and then taking the integer value will give us the
result of a die throw, and the program below shows two equivalent methods
of rounding down. The first uses INT, and the second merely assigns the
result of RND(l)*6+ I to the integer variable N%, which automatically rounds
down.

l REM *** ROUND AND RND ***
10 LET A=RNDC1J*6+1
20 LETNX=-A
30 LET R=INTCAJ
40 PRINTR
50 PRINTNx

The result of RND(0) is more predictable. It returns the value of the last
random number generated.

1 REM ***NOT SO RND ***
10 FOR R=l TO 50
20 PR I NTRND C0 J
30 NEXT

Orie BASIC keywords 171

Generating the same sequence of random numbers can sometimes be
useful. The number sequence is entered at a specific point by a specific
negative value for the RND parameter. The example program demonstrates
that setting the seed for the generator by RND(-4) will produce the same
sequence of numbers.

l REM***RND SEED***
10 FOR K=1T02:PRINT
20 SEED=RNDC-4J
30 FOR F==l TO 6
40 PRINTRNDClJ
50 NEXTF
60 NEXTK

Related keywords: None

RUN BASIC Token: 152
Format: RUN In

RUN

Used in isolation as a direct command RUN commences execution of the
current BASIC program in the Oric's memory. RUN LN, where In is a line
number, causes the computer to commence execution of the program from
the specified line. If the program in question contains no such line the Orie
will throw up an error message (UNDEFINED STATEMENT ERROR). RUN can
also be used within the body of a program, as the example below demons
trates:

l REM***RUN:le**
10 A$="PRESS ANY KEY TO STOP" :GOSUB70
20 CLS:PAPERl
30 X=RND C 1 J*32+1 : Y=RND (1 J*20+ 1
40 PLOTX,Y,"ORIC":WAlT50
50 U$=KEY$
60 IF U$ THEN END ELSE RUN
70 Z=LENCA$J ;~ORL=lTOZ
75 REM**PRINT TOP LINE**
80 POKE47999+L,ASCCMI0CA,L,1JJ
90 NEXTL
100 RETURN

Related keywords:CONT. END, STOP

172 Orie BASIC keywords

SCAN
BASIC Token: 242

Format: SCRN(x,y)

The SCRN function returns the ASCII code of the character at the screen
position defined by the co-ordinates x (column number 0-38) and y (row
number 0 -26). SCRN works only in LORES and TEXT modes. Numeric
expressions are valid for x and y, but the values must lie in the correct range,
or an ILLEGAL QUANTITY error occurs.

The simple examples below illustrate the use of SCRN. The first, uses
PRINT(a•, and the second uses PLOT. The hash sign is PRINTed at location 5,5
on the screen, by each method and line 20 uses SCRN to first PRINT the ASCII
code for #, then the same SCRN expression is used with CHR$ to print out the
actual character found in the screen memory location corresponding to
column x, row y.

5 CLS
10 PRINT@5,5;"tt"
20 PRINT SCRNC5,5J,CHR$CSCRNC5,5JJ

5 CLS
10 LET A$= 11 # 11

15 PLOT5,5,A$
20 PRINT SCRNC5,5J,CHR$CSCRNC5,5JJ

SCRN also works with redefined characters, returning the ASCII code of the
character which has been re-defined. The program below uses an asterisk as
a missile fired up the screen, guided left and right with the appropriate
cursor control keys, until one of the targets (formed by the re-defined !
character) printed across the screen is hit (when SCRN(X,Y)=33, the code for
"!").

10 REM *** SCRN ***
20 CLS: FOR I=l TO 8
30 READ A:POKE 46343+1,A
40 NEXT:POKE #24E,l:POKE#24F,l
50 PRINT @2,0;"PRESS SPACE TO FIRE,ARRO

WS TO MO\JE"
60 FOR I=l TO 10:PRINT @INTCRNDC1J*37J+

2' 1 ; "£" ;

70 NEXT:PRlNTCHR$Cl7J;CHR$C6J
80 REPEAT

Orie BASIC keywords 173

90 REPEAT:LJNTlL KEY$="" OR KEl$=CHR$Cl
3) :JF KEl$=CHR$C13J THEN GOTO 200

100 X=20:1=26
110 PRINT @X, I;"*"; :SHOOT
120 REPEAT:OX=X
130 IF KEl$=CHR$C8JAND X>2 THEN X=X-1
135 WA.TT 1
140 lFKEl$=CHR$C9JAND X<39THEN X=X+l
150 l=Y-1
160 PRINT @OX, 1+1 ; " '';
\70 IF SCRNCX,'()=33 THEN PRINT @X,I;" "

:EXPLODE:l=1 :GOTO 190
180 PRINT @X,f;"*"
190 UNTIL 1=1 :PRJNT @X,I;" "
200 UNTIL KEIS=CHR$C13J
210 POKE~24E,32:POKE#24F,4:PRJNTCHR$Cl7

);CHRSC6J
220 END
400 DATA 30,33,45,63,45,33,30,0

Related keywords: ASC, PLOT, PRINT(u

SGN
BASIC Token: 214

Format: SGN(n)

SGN is a numeric function which gives the sign or signum of a number,
returning -1 if the expression within the brackets evaluates as a negative
number, 0 if the number is zero, and 1 if it gives a positive value.

10 REM **SGN Function**
20 INPUT"Enter o. number" ;N
30 PRINT"'r'our number was 11 ;

40 ON SGNCNJ+2 GOSUB100,200,300
50 PRINT"Hit o. key to try another numbe

f II

60 GET MS

174 Orie BASIC keywords

70 GOT020
100 PRINT"NEGATIUE"
110 RETURN
200 PRINT"tero"
210 RETURN
300 PRINT"POSITIUE"
310 RETURN

The example program uses SGN to test the number INPUT, and uses this
value plus 2 to give 1, 2 or 3 for use with the ON . .. GOTO instruction in line
40, which passes control to the relevant subroutine to print out the sign of
the number.

Related keywords: ABS

SHOOT
BASIC Token: 163 .

Format: SHOOT

Shoot is a pre-defined sound command that produces a gunshot noise. In a
program, SHOOT merely requires a line like:

10SHOOT

Multiple SHOOT instructions must, as with all pre-defined sound commands
except ZAP, use WAIT to give sufficient time for the noise to execute and
avoid the sounds running into each other. Try the following:

10 FOR A=1T06
20 SHOOT
30 NEXT

This produces a sound like a single SHOOT instruction because the loop
finishes before the first sound has finished. Add the line:

10 FOR A= 1T06 ·
20 SHOOT
25 WAIT25
30 NEXT

and you'll get a six-gun firing distinct rounds.

Related keywords: EXPLODE, PING, ZAP

Orie BASIC keywords 175

SIN
BASIC Token: 227

Format: SIN(n)

SIN is a trigonometric function returning the Sine of the angle given by the
value of n, with n expressed in radians. The function calculates the basic
trigonometric ratio, which for a right triangle as shown in the diagram gives
the Sine of the angle at A (SIN(A)) as the length of the opposite side divided by
the length of the hypotenuse, i.e. BOAB.

The numeric expression evaluated by the SIN function must be expressed in
radians, and not degrees. As the angular measure goes from 0 to 360 degrees
round the circle, the measure in radians goes from 0 to 2*PI radians.
Conversion of degrees to radians and vice versa is simple, using the Oric's
built in PI function:

x degrees= x*PI/180 radians
x radians= x/Pl*I80 degrees

The example program prints out the values of the SINE of the angles from 0
to 360 in steps of ten degrees. Line 30 converts the degrees to radians, and
line 40 prints the angle and the result of applying SIN to the value in radians.

10 REM **SIN Function**
20 FOR ANGLE=0 TO 360 STEP 10
30 LET RADIANS=ANGLE*PI/180
40 PRINT ANGLE,SINCRADIANSJ
50 NEXT

If you look at the result closely, you will see that the values vary between 0
and I, without quite reaching either, due to the inaccuracies in the multiple
calculations involved. Change line 40 to the following, which rounds the
result to 4 decimal places, to see a clearer picture of the SIN values:

176 Orie BASIC keywords

10 REM **SIN Function**
20 FOR ANGLE=0 TO 360 STEP 10
30 LET RADIANS=ANGLE*Pl/180
40 PRINT ANGLE,CINTCSINCRADIANSJ*1E4+0.

5J/lE4J
50 NEXT

The next program uses TAB in conjunction with SIN to calculate a position
for printing an asterisk, producing a SIN curve as the screen scrolls. Since
the value given by SIN varies between 0 and 1, the expression I8*SIN(T) in line
20 gives a value between-: 18and+18, which is added to the TAB position to
vary the placing across the screen.

10 FOR T=0 TO B*PI STEP PI/8
20 PRINT TABC20+18*SINCTJJ ;"*"
30 NEXT

Related keywords ATN, cos, Pl, TAN

SOUND
BASIC Token: 167

Format: SOUND c,p,v
c=channel 8-6
p=pitch 8-65535
v=volume 0-15

SOUND produces, as you might imagine, a defined sound from the Oric's
dedicated sound chip. The Channel defines which of the three tone
channels (which are channels 1, 2 and 3), or noise channels (4, 5 and 6) is
activated. SOUND may be used without a PLAY command to activate
channels, and uses tone channel 1 in this case. Pitch controls the tone of the
sound produced, defining the frequency of the tone produced. The useful
range is 0-2000, but the example program below will enable you to judge
for yourself. Volume has a range from 0, which activates the envelope
parameter of a PLAY command, and produces nil volume without a PLAY

instruction, through 1 (quiet) to 15 (loud!).

10 FOR P=0 TO 32767
20 SOUND 1,P,2
40 NEXT

Orie BASIC keywords 177

The listings below give some idea of the flexibility of the SOUND command.
Whilst the basic structure of the program is the same in each case, very
different sounds are produced. The first program has a PLAY command
which activates noise channel 1, followed by the SOUND instructions, using
WAIT to set the length. Channel is set to 4 (=noise channel 1), the pitch
varies according to the value of the loop variable P, and two different
volumes are used.

1 REM SOUND EXAMPLE
S FOR P=l TO 3
10 PLAY 0, 1, 1, 250
20 SOUND 4,8+P,6
30 WAITS
40 SOUND 4,3+P,3
S0 WAIT 20
60 PLAY 0,0,0,0
70 NEXT p

80 GOTO s

The last parameter of the PLAY command is not activated whilst the volume
of the SOUND command is other than 0. Change line 20 to read SOUND 4,

s+P,0 and line 40 to SOUND 3+P,0 to hear what happens when the envelope
value is activated. (The same applies to the next two examples.) In the next
program, only the sound channel value is changed, and it is set to 1, which is
a tone channel.

1 REM SOUND EXAMPLE 2
S FOR P=l TO 3
10 PLAY 0, 1 , 1 , 2S0
20 SOUND 1, B+P, 6
30 WAITS
40 SOUND 1,3+P,3
S0 WAIT 20
60 PLAY 0,0,0,0
70 NEXT p

80 GOTO S

The final listing merely deletes line 10, and uses SOUND without a PLAY

instruction, although PLAY 0,0,0,0 is used to turn off the sound.

178 Orie BASIC keywords

t REM SOUND EXAMPLE
5 FOR P=l TO 3
20 SOUND 1,B+P,6
30 WAIT5
40 SOUND 1,3+P,3
50 WAIT 20
55 REM DELETE LINE
UNO 2
60 PLAY 0,0,0,0
70 NEXT P
80 GOTO 5

3

60 FOR YET ANOTHER SO

Related keywords: MUSIC, PLA y, WAIT

SPC
BASIC Token: 197

Format: SPC(n)

SPC is a PRINT operator which places n spaces on the screen. If n is not an
integer, the value is rounded down. Expressions may be used, and SPC is
useful in formatting, since string functions may be used inside the brackets.
SPC is used in PRINT statements to place spaces before or between the other
PRINT items.

10 REM**SPC Demo**
20 FOR F=l T010
30 PRINT "*"iSPCCFJ; 11 *";F;"spo.ces 11

40 NEXT

The program above uses a loop value to define the number of places to be
placed between the asterisks, and helpfully tells you how many it has placed
to boot. The SPC function is useful as an alternative to the use of TAB and is
flexible in use, as the next example shows. The value produced within the
FOR ... NEXT loop is converted to the string form, using STR$ in line 30, and
LEN is used with this string to give a calculated number of spaces in line 40.
This produces a display with all the numbers aligned.

1 REM Cdlculdted SPC Udlue
10 FOR F=l TO 10
20 LET Nx=F"2*39
30 LET N$=STR$CNxJ
40 PRINT SPCC20-LENCN$JJ;Nx
50 NEXT F

Related keywords: PRINT, LPRINT, TAB

Orie BASIC keywords 179

SQR
BASIC Token: 222

Format: SQR(n)

SQR is a function which calculates the square root of the value representec
by the numeric expression n, which must be positive (>0), or an ILLEGAi

QUANTITY ERROR results.

10 REM SQR function demo
20 FOR N=30 TO 20 STEP-1
30 PRINT N,SQRCNJ
40 NEXT N

The program produces a display of the numbers from 30 to 20 with their
square roots .

Related keywords: None

STOP
BASIC Token: 179

Format: STOP

The instruction STOP halts program execution, displaying the message
BREAK IN LN where In is the number of the line containing the STOP instruc
tion. The program may be re-started with the command CONT, followed by
RETURN. It is similar to the instruction END, but END terminates the
program, which may not be re-started, as the example program illustrates.

10 REM STOP
20 FOR X=l TO 3
30 PRINT "X=";X
40 PRINT "PROGRAM HALTED.ENTER CONT TOR
ESTART."

180 Orie BASIC keywords

50 STOP
60 NEXT X
70 END
80 PRINT"THIS LINE NOT PRINTED,SINCE CON
T DOES NOT WORK WITH END"

Related keywords: END, w AIT

STORE
BASIC Token: 139

Format: STORE v ,"filename" (,S)
STORE v$, "filename" (,S)
STOREv%, "filename"(,S)

STORE is used to save the contents of an array as a cassette file on tape. The
array must have been previously DIMensioned, either via a DIM instruction
or implicitly by using an array element to set a default 11 element array, else
an OUT OF DATA error will occur. The array may be a floating point array,
e .g. A(20), an integer array, e.g. A%(20), or a string array such as A$(20). The
array variable must be specified as A, A$, or A%, to identify the array
correctly. Arrays with multiple dimensions are allowed. The "filename"
can be anything you like up to 16 characters.

The same procedure is used as with CSAVE, and the default baud rate of
2400 baud (fast save) can likewise be altered to the slow rate of 300 baud by
appending S after a comma (,S) to the end of the command. The message
SAVING FILENAME (or whatever you've called the array) appears on the
status line, followed by a letter specifying the type of array: R for arrays
containing Real floating point numbers; I for an Integer array, and s for
String arrays. Try the following program to see STORE and RECALL in
action. A$(20l is DIMensioned and loaded with demonstration strings. The
array is then STORED, and the variables cleared. The program will then
RECALL the array and PRINT sample values.

1 REM *** STORE/RECALL ***
10 DIMA$C20J
20 FOR F=0 TO 20
30 LETA$CFJ="NUMBER "+STR$CFJ
40 NEXT
50 PRINT"START CASSETTE ON RECORD,PRESS
A KEY'' :GET A$
60 STORE A$,"ARRAl",S

Orie BASIC keywords 181

70 CLEAR
80 DIM A$(20J
'30 PRINT"REWIND CASSETTE,SET TO PLAY,

RESS ANY KEY'' :GET A$
100 RECALL A$,"ARRAY",S
110 PRINTA$(9J
120 PRINTA$Cl0J
130 END

Related keywords: CLOAD, CSA VE, DIM, RECALL

STA$
BASIC Token: 234

Format: STR$(n)

p

This is a string function, used to transform a numeric value into a string
form. It is thus the opposite of VAL, which turns a string of numeric
characters into a number. Exponential and hexadecimal numbers may be
used, and they will be converted to standard notation (as would normally
appear on screen) before being turned into a string. The string has a first
character that holds the sign if the number is negative, but is left as a space if
the number is positive.

1 REM ;t:;t:STR$;t:;t:
10 LET N=12.34
20 CLS:PRINT STR$CNJ:WAJT 15
30 PLOT 10,1,STR$CNJ :WAIT 45
40 PLOT 0, 1, STR$CNJ :WAIT 15
50 PLOT 10,8,STR$CNJ :WAIT 15
60 LET X=-23.5
70 PRINT
80 PRINT STR$CX):wAIT 15
90 PLOT 9,2,STR$CXJ
100 PRINT "HEXADECIMAL #A3 PRINTS AS "S

TR$C#A3J
110 PRINT"J.345E-4PRINTS AS "STR$(l.345

E-4)
120 PRINT"l.23E2 PRINTS AS "STR$Cl.23E2

182 Orie BASIC keywords

The program uses PLOT to place characters, but could equally well have
used PRINT(<i .

STR$ is also useful in placing numbers on to the HIRES screen, as only
string characters can be placed using CHAR. The next program illustrates
this, using STR$ to get the string form of a number, then taking each
character in turn, finding the character code with Ase, and placing it on the
screen. The same technique is used to strip off the first character if the
number is not negative.

10 REM *** STR$ ***
20 HIRES
30 FOR A=l TO 10 STEP .5
40 A$=STR$CA)
50 GOSUB 100
60 NEXT
70 END
100 REM PUT STRJNG ON HJRES SCREEN
110 FOR 8=1 TO LENCA$)
120 CURSET B*6+A*6,A*16,0
130 CHAR ASCCMJ0$(A~,8)),0, 1
140 NEXT
150 RETURN

Related keywords: VAL

Orie BASIC keywords 183

BASIC Token: 194
TAB Format: PRINTTAB(n)

TAB is used in a PRINT statement to place PRINT items at a particular column
position. The value of n defines the column to which the PRINT position will
be advanced. The next item to be PRINTed will follow directly on, if nothing
or a semi-colon is placed after the TAB(n) statement, or in the next PRINT field
if a comma is used. Numbers are PRINTed with leading spaces if not
negative. Columns are numbered 0 to 39 across the screen, and the
following program will illustrate the effect of the protected columns.

20 FOR F=0 TO 15
30 PRINT TABCFJ;F
40 NEXT F
50 REM NOW USE CTRL J AND TRY AGAIN

There can be more than one TAB statement in a PRINT instruction. The next
example illustrates this.

10 PRINT TABC10J10;TABC20J;20
20 PRINT TABC10J;10;TABC20J,-20
30 PRINT TABC10J"X"TABC20J,"Y"

Related keywords: LPRINT, PRINT, POS, SPC

184 Orie BASIC keywords

TAN
BASIC Token: 228

Format: TAN(n)

TAN is a trigonometric function which returns the tangent of the angle given
by the numeric expression n. TAN gives a result which is equivalent to
SIN(n)tCOS(nl. In the right triangle pictured below this is the ratio of Opposite
side/ Adjacent side. The value of n must be expressed in radians. See SIN for
the conversion of degrees to radians and vice versa.

B

c
The first example program merely displays a table of the values of TAN for
angles from 0 to 360 degrees (2*PI radians).

l0 REM *** TAN ***
20 DEF FNRCDEGJ=DEG.PI/180
30 FOR 0=0 TO 360
40 P=0/20:Px=0/20
50 PRINT O,TANCFNRCDJJ
60 IF P=Px THEN WAIT 100
70 NEXT

Orie BASIC keywords 185

The second example calculates the distance from B to c (imagine it's across a
river whose width is unknown) from a knowledge of the distance AC (along
the riverbank) and the angle at A.

10 REM *** TAN ***
20 CLS:PRINT"ANGLE AT A IS II;
30 READ A:PRINT A
40 PRINT"DISTANCE ALONG AC IS";
50 READ AC:PRJNT AC
60 PRINT:PRINT"SINCE THE TANGENT OF A I

S DEFINED AS"
70 PRINT"BC/AC WE CAN SEE THAT BC IS TA

NCAHAC"
90 PRINT :PRINT" THUS BC IS'' ;TANCAJ-*AC
100 END
200 REM ANGLE IS IN RADIANS
210 DATA 0. 73, 20

Related keywords: ATN, cos, SIN, PI

TEXT
BASIC Token: 161

Format: TEXT

TEXT is an instruction that places the Orie in the standard text mode, as at
initial switch-on, with the 40 column by 27 row screen, for display of the
standard character set (and user defined characters). Use of LORES or HIRES
sets alternative screen modes which remain until countermanded by CLS
and TEXT respectively.

The LORES screen will scroll upwards, leaving a TEXT screen, with
repeated PRINTings, however.

Related keywords: HIRES, LORES

TROFF
BASIC Token: 133

Format: TROFF

TROFF, standing for TRace OFF, turns off the trace facility by which program
line numbers are displayed on screen as the lines are executed by the BASIC

186 Orie BASIC keywords

interpreter. See TRON, which activates the trace facility .

Related keywords: TRON

TRON
BASIC Token: 132

Format: TRON

TRON (meaning TRace ON) enables the aid to debugging and tracing
problems in programs, which prints the line number of each program line
in square brackets [] when the BASIC interpreter encounters and executes
each line. TRON and TROFF enable the programmer to see the sequence in
which the lines are executed, as well as the results of the execution which
would normally be displayed, when inserted (temporarily) into the pro
gram listing. In the example program below, there is a problem of an
endless loop. The TRON statement prints out the line numbers, and we can
see the flow of control.

10 REM *** TRON *** 20 CLS
30 TRON
40 FOR A=l TO 10
50 PRlNT A
60 lF A=6 THEN A=l
?0 NEXT
80 END

Inserting a line 65 TROFF would give us a display ofline numbers for only the
first cycle through the FOR ... NEXT loop.

Related keywords: TROFF

TRUE
BASIC Token: 239

Format: TRUE

TRUE is a system constant built in to the Orie which returns the value of -1,
which is used to represent the result of evaluating a conditional expression
as TRUE. The value used by the Orie for FALSE is 0, and the FALSE variable
holds this value. The two variables are used in conjunction to make a
program clearer, primarily in conjunction with the use of flags, which are

Orie BASIC keywords 187

commonly set to be equal to one of two values, and represent conditions
which may easily be tested. TRUE must be used with some care if the NOT
operator is to be used, since the Orie takes any non-zero value for a numeric
expression to be true, but whereas NOT TRUE= FALSE and NOT FALSE=TRUE,
the conditional test IF AB THEN ... will evaluate as TRUE if variable AB is
anything other than zero, but if AB were, say, 34, then NOT AB would return
- 23. This is not the same as FALSE in the Orie' s eyes!

The program illustrates the use of TRUE and FALSE to control a REPEAT ...
UNTIL loop.

5 FLAG=FALSE
10 PRINT"INPUT A TWO-LETTER WORD"
20 REPEAT
30 INPUT A$
40 IF LENCA$)=2THEN FLAG=TRUE
50 UNTIL FLAG=TRUE
60 PR I NT" SO YOU CAN READ I NS TRUC T IONS 2"

Related keywords: FALSE

UNTIL
BASIC Token: 140

Format: UNTIL c

UNTIL forms part of the REPEAT ... UNTIL loop structure. When an UNTIL
statement is encountered, the conditional expression is evaluated. If it is
found to be TRUE, program control will pass to the next statement, and the
loop will be exited. If the condition is FALSE, control will be passed back to
the statement following the REPEAT which initialised the loop. A ?BAD UNTIL
ERROR will be produced if no corresponding REPEAT is found.

Related keywords: FALSE, REPEAT, TRUE

USR
BASIC Token: 217

Format: DEF USR = addr
USR(i)

This function allows access to machine code routines in the course of a BASIC
program. In the command format above, the first example DEFines the start
address of the machine code routine as addr.

188 Orie BASIC keywords

In the second format, the routine is called by USR(i) and places the value of
i in the floating point accumulator. Once the machine code routine is
completed, USR returns to the main body of the program and the result must
either be printed (PRINT USR (0)) or assigned to a variable (A=USR(0)). If there
are no values to be passed to a machine code routine, then the routine
should be invoked by CALL. See Chapter 10 for an introduction to machine
code programming.

Related keywords: CALL, DEF

VAL BASIC Token: 235
Format: VAL(a$)

This is a string function which returns the numeric value of the characters
given by the string expression within brackets. The first character of the
string to be evaluated must begin with a space, a minus sign, a hash sign or a
number, else zero is returned. After these characters, or the first number,
the string is evaluated up to the first non-numeric character, as the decimal
equivalent if a hexadecimal number (starting with #)is found in the string.
Exponential notation is also handled, and the number will be held in the
same form as it will print on the screen, rather than in the precise form it
had within the string. To see this, try entering, say, l.23E2 into the
program below, along with any other numeric forms. Any non-numeric
characters found in the string after the Orie has found characters it can
interpret as a number will be ignored.

t0 REM *** IJAL ***
20 CLS
30 REPEAT
40 INPUT "ANY STRING PLEASE ";A.$
50 PRINT "THAT STARTS WITH THE NUMBER";
60 PRINT UALCA.$)
70 PRINT
80 UNTIL A.$="STOP"
30 END

Related keywords: ASC, STR$

WAIT

Orie BASIC keywords 189

BASIC Token: 181
Format: WAIT n

This instruction gives a delay of n one-hundredths of a second before
program execution continues. WAIT is crucial to the sound commands of the
Orie, for the purpose of controlling the duration of the results of PLAY,
SOUND and MUSIC instructions. It may also be used to introduce pauses into
programs, for slowing down screen displays, but it should be noted that no
keyboard input will interrupt a WAITing period. For delays until the user
presses a key, or inputs data, GET and INPUT must be used.

Related keywords: MUSIC, SOUND, PLAY

ZAP
BASIC Token: 165

Format: ZAP

This is one of the Oric's pre-defined sounds, producing a noise like a
futuristic weapon report for use in games. Unlike its Orie comrades, ZAP
does not need a delay whilst the sound is produced, and it may be used
repeatedly without the WAIT instruction required by PING, SHOOT and
EXPLODE.

10 FOR F=1T06
20 PAPER F
30 2AP
40 NEXT

Related keywords: EXPLODE, SHOOT, PING

10 Introducing
machine code

Assuming you have had a go at writing some programs in Orie BASIC, you
may be wondering if you could speed things up a little so that your Invaders
move more swiftly and smoothly across the screen, and your programs
generally run faster. You can - but first let us consider why the animated
effects sometimes appear slow or jerky and noticeable delays occur in
complex programs.

BASIC is an interpretive language (although it can also be compiled if a
suitable program and floppy disk system are available), which means that
the instructions you code (the program) are held almost exactly as keyed in.
This means that the BASIC interpreter has to examine each statement at RUN
time, decide what the statement is trying to do, and then call appropriate
machine code routines to action the statement. Although the machine code
routines are themselves very fast and efficient, several routines may need to
be involved for a single statement. Even more important, each statement
must be parsed, i.e. scanned for operators such as'+', '-', 'IF', etc, and
then rearranged into a form suitable for linear execution in the specific
sequence the Orie requires (conforming to the priority sequence) and
finally passed on to the machine code routines. This is the interpretive
process, and it occurs for every statement, each time the statement is
encountered. It is this process which slows things down. Therefore, if we
code directly in machine code and develop our own routines for specific
functions, we get code which is very much faster, and it is even possible that
we may have to introduce delays deliberately to slow things down! Ever
tried shooting down an Invader which crosses the screen in one-tenth of a
second?

However, coding a program in machine code has its disadvantages too. It
is difficult to learn, it is easier to make mistakes when using machine code,
and it is more difficult to debug- no helpful messages like 'SYNTAX ERROR'!
But it is also interesting and rewarding and, provided that a little care is
taken, is well within the reach of the hobbyist as well as the serious
programmer.

To use machine code efficiently and correctly it is necessary first to learn
something about the 6502 microprocessor itself, but before we can do this
we need to know a little about number systems, or ways of representing the
manipulating numeric information. Knowledge of the way in which charac-

Introducing machine code 191

ters (such as the alphabet) are represented is also necessary. We will
therefore deal with these now before we get on to the instruction codes
themselves. (Do not skip or skim the following paragraphs - they could
save you hours of debugging!)

Number systems - decimal

Thanks to Mother Nature we use a decimal number system for most of our
arithmetic needs - counting starts on our fingers and thumbs. Thanks to the
Arabs, who gave us the zero and decimal point, we have been able to
develop methods for multiplication and division, without which life might
be a bit tedious. Let's look first at the decimal number system.

When we count we usually start at one, although in a count-down we
count backwards to zero. S . . 4 .. 3 .. 2 .. 1 .. ZERO - WE HAVE LIFT

OFF! The zero is important and should really start any count (upward).
When we're counting upwards and reach number nine we than revert to
zero again, but now add a leading digit (one for the first time, two for the
second, etc. - 0, 1, 2, 3, 4, ... 9, 10). When we reach 99, we add another
leading digit and revert to zero- 100.

We are really adding one to the previous number until the last digit
reaches 9. Then we reset the last digit to zero and carry one, adding it to the
second-to-last digit. If this is already 9 we reset it to zero and carry one to the
next digit, and so on. Finally, adding a number greater than one to another
number is simply a matter of adding one more than once. For example, 9+ S
can be written as 9+ 1+1+1 + 1+1. We do not normally do this because we
have memorised the sums of all possible combinations of the digits 0 to 9,
and the process of addition has become automatic.

So why state the obvious? Well, patience is a virtue and automatons are
not creative, so we have to stretch our automatic assumptions. Computers
generally work in a non-decimal number system. Ever wondered why lK in
computing is 1024 instead of 1000 - after all, a kilogram (or kg) is 1000
grams? You are about to find out, because the next number system is binary.

Binary

The binary system uses only two digits: zero and one (0 and 1). In
computing we always write zero as '0' to distinguish it from the letter 'O',
and this is a practice which you would do well to follow. In the decimal
system we had a carry of one whenever we added one to a nine, the nine at
that position then reverting to zero. In the binary system our carry of one
occurs when we add one to one, and the digit-position reverts to zero. So,
l + l= 10. This is the first rule. The second is even easier: 0+ 1(or1 +0)= l.
The third is obvious: 0+0=0.

Try this for practice: 10101 +01101 =?

192 Introducing machine code

If you did not get an answer of 100010 you need to reread the previous
paragraph.

Now let us compare the decimal digits 0 to 15 with the binary ·
equivalents.

Decimal Binary Hexadecimal
0 0000 0
l 0001 l
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 c
13 1101 D
14 1110 E
15 1111 F

Being an astute reader you will have noticed two things - that the binary
numbers were written as a sequence of four binary digits, and that a third
column labelled 'hexadecimal' had been included. You may even have
noticed that this third column looked like decimal until decimal value 10,
and that it then became alphabetic. This is because writing long strings of
ones and zeros can be pretty tedious, and can lead to errors, so we represent
groups of four binary digits by a single digit. Since there are no single-digit
numbers greater than 9 we 'borrow' the first six characters of the alphabet -
A, B, C, D, E, and F - to represent the numbers 10 to 15. This makes life
much easier - for example, the decimal number 1024 in binary is
010000000000, and in hexadecimal is 400. We arrive at this value by
grouping the binary digits, from the right, in fours, and then converting
each group to its hexadecimal (or hex, for short) equivalent. Thus:

0100 0000 0000 binary
4 0 0 hex

Very clever, you may think, but what does all this have to do with
programming in machine code? Everything, but bear with us for a while -
there are another pair of terms to be introduced first. They are both
conventions. First, we refer to binary digits as bits. We can say therefore,
that a hexadecimal (or hex) digit represents four bits. Secondly, the main
unit of computer memory is the byte, which consists of eight bits.
Therefore, the contents of a byte can be expressed as two hex digits. For
example:

Introducing machine code 193

decimal 17 = binary 00010001
hex II

The highest binary value that can be contained in a byte (eight bits) is
expressed:

llll llll
F F in hex
2SS in decimal

A byte can therefore represent 2S6 values, i.e. 0 to 2SS decimal. The bits in
a byte are numbered 0 to 7, right to left, when we need to refer to them
individually.

Converting numbers between binary or hex and decimal is likely to get
tiresome for large numbers unless we understand a little more about
number systems. Basically, the decimal system is to the base 10, and the
value of each digit (working from the right) is the product of the digit and
10, to an increasing power. A power is the number of times a number is
multiplied by itself, and a power of zero always gives I (except for zero to
the power of zero which is zero).
For example, decimal 123 can be written as:

(l x 102)+(2x101)+(3x 109)

or
(l x 10x 10)+(2x 10)+(3x I)
or
(l x I00)+(2x 10)+(3x 1)
or
100+20+3=123

The small numbers above the 10's are the powers.

In binary the same principle is used, except that the base used is two. We
can therefore write decimal IS in binary as:

l ll l (l x23)+(l x22)+(l x21)+(l x29)

(l x2x2x2)+(l x2x2)+(1 x2)+(l x I)
(l x 8)+(1 x4)+(l x2)+(1 x I)
8+4+2+1
IS Decimal

Hexadecimal uses base 16 (there are sixteen digits in the system, 0- IS). So,
hex 21 can be written as:

hex 21 (2x 161)+(1x1611)

(2x 16)+(1 x I)
32+1
33 decimal.

194 Introducing machine code

The above examples show conversion of binary and hexadecimal to deci
mal. To convert from decimal into binary or hex we divide by the
appropriate base, repeatedly, and then string together the remainder digits,
from the final operation backward:

decimal 15 15/2=7, remainder I)
712 = 3, remainder I
3/2 = I , remainder I = l l l l binary

112=0, remainder I

decimal 11 11/2:5, rema~der I)
512-2, rema~nder I = 1011
212 = I, remainder 0
1/2=0, remainder 1

Similarly, for conversion from decimal to hexadecimal we divide by
decimal 16:

decimal43 = 43/16=2,RYll=hexB}=2B
2116=0, RY 2=hex 2

decimal 107= 107/16=6, RYll=hex B} = 6B
6116=0, RY 6=hex 6

Negative numbers

So far we have considered only arithmetic which results in a positive
answer. We also need to consider negative results. How are they repre
sented and identified?

The convention in binary systems is to indicate a negative number by
setting the high (leftmost) bit to a 1. This itself is not enough - another
convention is also required to allow the addition of positive and negative
numbers and obtain a correct result. For example, let us add -4 and +5,
using the high order bit in the former number to indicate negative status or
sign.

-4=binary
+S=binary
binary addition gives

10000100
00000101
10001001

This is obviously incorrect. To achieve correct results we must represent
negative numbers by subjecting the absolute value to a process called two's
complementation. This simply entails a reversal of bit values (i.e. swapping 0
to 1 and vice versa) and adding 1. Let us try it with 4:

4decimal=
'Flipping'0'sand l's:
Adding 1 gives

00000100
11111011
11111100

Now adding + S
Result:

Introducing machine code 195

00000101
00000001

The result is nine bits: 100000001. The leftmost bit 'falls off the end and is
a carry, which can be ignored. The remaining bits gives a result+ 1, which is
the correct sum of+ S and -4. To interpret a negative number we subtract
1 and then 'flip' the bits.

For example: 11111111
1

11111110

Flip = 00000001 = 1 and so 11111111 = -1 decimal.

Now consider the example of 127+ 1:

127= 01111111 - the sign bit is 0 (positive)
+ 1 = 00000001

10000000 - the sign bit is now 1 !

This overflow from bit 6 to bit 7 which appears to change the sign of a result
is an error condition which must be tested and catered for in the arithmetic.
In practice it is only the most significant bit of the total number that needs to
be tested for an error - in a 16 bit number it is bit 1 S. It is therefore essential
to decide the magnitude of the largest number to be handled when deciding
how many bytes are to be allocated for number storage. Overflow on low
order bytes in a multi-byte number may be ignored and only carry testing is
required.

Binary coded decimal or BCD

So far we have been working in binary. It is also possible to represent
decimal numbers in binary, and perform arithmetic with this form of
representation.

Since the largest decimal digit is 9, and can be represented in 4 bits-1001
- it is possible to store 2 decimal digits in an eight-bit byte. For example
99= 10011001. This is known as packed decimal, and the representation of
decimal numbers in this fashion is known as binary coded decimal, or BCD
for short.

When performing arithmetic on packed BCD it is necessary to test for 9s
overflow - the generation of binary combinators greater than 9 - and adjust
the digit concerned, carrying 1 to the next digit.

Tens' complement numbers can be calculated by subtracting the positive
value of a number from a string of 9s which represent the maximum value of
numbers to be represented, then adding 1. For example, if the largest
number we intend to work with is 999, the tens' complement of 2 (i.e. -2)
will be given by:

196 Introducing machine code

999
2

997
+ 1

998

The sum of (say) 763 -2 will therefore be:

763
+ 998

1761 =761 +Carry 1 (ignored)

Fortunately, this process will not be necessary when writing 6502 machine
code, since this chip has a decimal arithmetic capability! However, the
above has been included for completeness. Well, that's the complexity of
computer numbers clarified (we hope), so let us take a look at addressing.

Addressing

When we write in BASIC each statement or group of statements has an
associated line number. This is for the GOTOs and GOSUBs and can be
considered as a program address for those commands which cause a transfer
of control from the normal sequence of processing. If our program was
purely sequential we would not need GOTOs or GOSUBs, and we would not
require line numbers either. Some high-level languages other than BASIC
only need line numbers as labels for jumps.

When we use machine code we do not use statement numbers (as
addresses, anyway) and we need some way of pointing the machine code
equivalents of GOTOs and GOSUBs at the appropriate part of the program. In
addition, we must decide where our variables (and constants) are to be
stored in memory, whereas in BASIC this is done for us automatically. When
we come to the machine-code instructions we will find that many of these
will require an address (of data, or of the next instruction), and we must
supply these in a form that is machine executable. This means in binary,
though preferably represented as hex digits for our convenience, since this
is what the computer understands.

The 6502 chip has sixteen address lines, i.e. a memory address contains
sixteen bits (though a special case, of eight bit addresses, also exists). This
means that the highest memory location (or byte) is 1111 1111 1111 1111,
or hex FFFF, or decimal 65535 (which is generally expressed as 64K). If we
did not use hex notation (of four hex digits) we would need to write strings
of sixteen bits for each and every instruction which addressed memory!
Even the simplest program would take a very long time to code and enter,
and would be extremely error-prone. So, dear programmer, if you have

Introducing machine code 197

skimmed lightly over the paragraphs which precede this, it might be a good
idea if you went back to the beginning and re-read this section. Also try
some examples of your own, and check your answers against the tables at
the back of this handbook to verify your results. It will be time well spent
and will soon make you proficient in number system conversions. Even if
you don't want to explore the complexities of machine code, an understand
ing of binary and hex will stand you in good stead in the world of
computers.

Machine code instructions

Instructions at the machine-code level have two main components - the
operation code (or op code) and the operand(s).

The operation code, in the case of the 6502 (and most other micro
processors) consists of a single byte. The binary value of this byte specifies
which operation (e.g. addition or subtraction) is to be performed. (For
convenience, each op code is given a mnemonic, which means it's supposed
to be easier to remember than the hex op code.) A list of op codes, and their
associated mnemonics, will be found in Appendix 8.

The second part of an instruction, the operand, varies according to the
nature of the instruction, and may consist of one or two bytes, or be implied
by the op code itself (i.e. may not be actually stated as an operand.) In the
latter case the op code specifies the complete operation. When physical
operands do exist they contain either an address (one or two bytes) or data
(one byte).

Op Code

DD
Data (1 byte)
or
Address (2 bytes)

With one-byte op codes, it is possible to have 256 different instructions
(values 0-255). However, the actual number of instructions required for
satisfactory programming is considerably less, and the 6502 uses the spare
values to modify the basic instruction set to include different addressing
modes. As a result, each instruction type may have several different op
codes, each one using a different mode of addressing. Before we examine
these modes, however, we need to familiarise ourselves with the concepts of
registers, pages, indexing, and indirect addressing.

One principle of machine-code operations should be pointed out briefly
here. The operations of the 6502 are timed by a clock, which regulates the
operation cycles of the CPU . A cycle allows one operation to take place. The
first cycle in executing an operation fetches the op code, then the second

198 Introducing machine code

and third bytes of the operand are found in the subsequent cycles, if they
are present. The next cycle will execute the operation, unless indirect
addressing is being used, which will require more cycles. Different opera
tions will thus occupy different numbers of cycles.

Registers

A register is a memory location within the 6502 microprocessor chip which
is used to hold data required by the instruction being executed. Because the
registers reside within the chip itself, they are not directly addressable
except by using the instructions which operate on them. The 6502 has six
registers, one of which has sixteen bits (the PC or program counter
register), the others (A, X, Y, S, and P registers) being eight-bit registers.
Registers may also be used as temporary stores (to pass data between
routines), or as counters. However, each of the registers mentioned above
has a specific purpose which will be explained shortly. Let us first examine
the other main concepts.

Pages

It was mentioned earlier that the 6502, as a result of having sixteen address
lines, can directly address 216 or 65536 locations in main memory. This is
accomplished via instructions with two-byte addresses (value 0000 to
FFFF hex). However, one-byte address instructions are also supported,
which execute faster, and five of the six registers are eight bits (one byte)
long. This implies that some instructions can address only 256 bytes of
memory at the very start of RAM! In fact, a special addressing mode exists
which allows short-address instructions to access the first 256 bytes of
memory very much faster. This mode is called zero-page addressing, which
introduces the concept of pages of memory.

Because of the internal architecture of the 6502, the 64K of RAM may be
considered to consist of pages of 256 bytes each, with page zero and page
one having special functions. For completeness, it should be said that
instructions which cause a page boundary to be crossed take one extra cycle
to execute.

The limitations of register length will now be discussed, introducing the
concept of indexing.

Indexing

Indexing is a means of dynamic address modification. In other words, an
instruction address is changed at the time of execution. This facility is
necessary to access consecutive items in tables, or arrays, for example,
which would otherwise require separate instructions for each table item to

Introducing machine code 199

be accessed. The subscript facility for BASIC arrays is the high-level
language equivalent.

You might recall that two of the registers mentioned earlier were the X
and Y registers. It would be more appropriate to call them the X and Y
index registers, since they are primarily designed for indexing. In brief,
some of the op codes specify that the address of the data to be operated on is
to be calculated (by the chip) by adding the contents of the X or Y registers
to the specified address operand. To access multiple items in a table,
therefore, one needs only to modify the contents of the relevant index
register. Indexing, therefore, is yet another addressing mode.

Indirect addressing

Indirection is a very powerful facility which allows an instruction address
operand to be selected (rather than computed or modified) from a number
of possible addresses. The principle is that the address following the op
code is used to point at a location in memory which contains the required
address. This second address is used to access the data required by the
instruction.

6502 Registers

Since a large number of instructions use the registers mentioned earlier, we
will first examine these registers.

A-Register (accumulator)

The A-register is also called the accumulator, because it is used to
accumulate results derived from arithmetic operations. Accumulator-based
arithmetic is very fast because the operations are carried out within the
hardware register. However, before any accumulator operation is per
formed, the accumulator must first be loaded with data from memory.
Similarly, after the operation, the modified data is stored back into
memory.

X and Y registers (indices)

These are primarily index registers, and are used for dynamic address
modification. When used as indices they must first be loaded or initialised.
There are specific instructions to modify the contents of these registers, and
other instructions which specify them as indices.

200 Introducing machine code

S-register (stack pointer)

The S-register is used to locate the next available location in a special area of
memory called the stack. The stack is effectively a sequential list of items,
and is used for subroutine calls and exits. This concept will be dealt with
more thoroughly in conjunction with subroutine control instructions. The
stack register always addresses page I of RAM. For this reason page I should
not be used by the programmer. There are specific instructions which use
the stack register to modify the contents of page I.

P-register (processor status)

This register is really a set of eight one-bit flags, which provide information
on CPU status following the execution of instruction. The flags are set and
reset automatically by instruction execution. The values of these flags can
be tested, and a range of instructions has been provided for this purpose.

The flags within the P-register are as follows:
Bit 7: N flag- set if arithmetic result is Negative.
Bit 6: V flag- is the oVerflow indicator which is set when a carry occurs

from accumulator bit 6 to bit 7.
Bit S: Not used.
Bit 4: B-flag- set when the BRK (Break) command is executed.
Bit 3: D-flag- setto I when processor is operating in Decimal mode: 0 for

binary mode.
Bit 2: I-flag- Interrupt mark. Set by interrupts, or instruction to inhibit

further interrupts. Cleared by specific instruction.
Bit I: Z-flag - set to I when the result of arithmetic or data transfer is

Zero.
Bit 0: C-flag - indicates a 'Carry' or 'borrow' on arithmetic, or the

presence of a bit shifted or rotated out of an address or register.
Some bits within this register can be directly set or reset by the

programmer.

PC-register (program counter)

This is the only sixteen-bit register, and contains the address of the
instruction following the one currently being executed. Although not
directly accessible by the programmer, it can be stored into the stack and
examined in the stack area. The PC-register is used by the CPU (Central
Processing Unit) in the microprocessor to fetch the next instruction to be
executed, and is automatically incremented as each instruction/address
byte is fetched. It is also modified by Branch and Jump instructions,
whenever these instructions change the sequence of program flow.

Introducing machine code 201

6562 Addressing modes

We have now covered some of the concepts of addressing, and move on to
the actual modes supported by the 6502.

Implied

An implied address is one where the address is specified by the op code
itself. On the 6502, instructions which operate directly on specific registers
are considered to have implied addresses (for example INX and INY,
meaning increment X and Y register respectively), and are therefore
single-byte instructions.

Immediate

An immediate address is the address following the op code. Instructions
operating in immediate mode contain a single byte of data in the byte
following the op code. This data byte is called a literal. Instructions of this
kind occupy two bytes.

Zero page

A zero-page address is one which specifies a memory location within page
zero (the first 256 bytes of memory). A zero-page instruction will therefore
be two bytes long.

Indexed

This mode of addressing uses index registers X and Y to modify the address
following the op code. This address may be one-byte (page zero) or
two-bytes (anywhere in memory). Instructions may therefore be of two or
three bytes.

Absolute

Absolute addresses are two-byte addresses unmodified by indexing.
Instructions using this form of addressing are therefore three bytes long.

Indirect

Pure indirect addressing uses a two-byte address after the op code to access
a two-byte data address elsewhere in memory. Both addresses are
unmodified by indexing.

Only one instruction in the 6502 instruction set uses this form of

202 Introducing machine code

addressing- the JMP (Jump) instruction, which is therefore three bytes in
length.

Indirect-indexed

The 6502 supports two forms of indirect-indexed addressing, both of which
are used with index registers and are restricted to addressing page zero of
memory.

The first form uses index register X and will be referred to hereafter as
indirect-X addressing. It is used to access tables in page zero only. This
form is actually better described as indexed-indirect, since the index
register X is added to the zero page address to find the location which
contains the first byte of the indirection address. This is the two-byte
address which is used in accessing the memory.

The second form uses th.'! index register Y and will be called indirect-Y
addressing. This form allows access to specific entries within tables held
anywhere in main memory. The final address (of data) is computed by
adding the contents of Y to the sixteen-bit address pointed to by the page
zero address following the op code. If the sixteen-bit address held in page
zero points at the start of a table in main memory, then index register Y can
be used to point at any specific entry within 256 bytes of the start of the table
(Y is eight bits long- remember!). Since the op code is always followed by a
page zero address, indirect-indexed address instructions are two bytes long.

Relative

Relative addresses are based on the value held in the program counter, and
are used by a group of instructions called conditional branches. These
instructions are two bytes long and specify a test to be made on the
P-register flags. The address following the op code is a one-byte address
which specifies the relative address of the next instruction to be executed if
the test is satisfied. Because the address is only one byte long the range of
addressing is limited to 256. Since most loops are generally fairly short the
address byte is allowed to contain both positive and negative (or forward and
backward) branch addresses. This is accomplished by using the high-order
bit of the address as a sign bit, allowing a forward branch of up to + 127
bytes, and a backward branch of up to -128 bytes (using 2's complement
arithmetic). Since branch instructions are two bytes long this results in
actual branch ranges of -126 (-128+2) and + 129 (+ 127 +2), relative to
the address of the branch instruction.

Instruction classification by addressing mode

We have seen that several addressing modes exist for 6502 instructions, and

Introducing machine code 203

it has also been said that multiple op codes exist for each type of instruction.
We will now expand on these modes and give each an abbreviated name so
that, when the instructions are to be used, a quick glance at the table at the
end of this handbook (Appendix 8) will make it easy to see which addressing
modes (and op codes) are available for each instruction.

Mode Length Description of mode

I I Implied (implied operands)
IM 2 Immediate (literal follows op code)
ZP 2 Zero page (one-byte address)
zx 2 Zero page, indexed by X
ZY 2 Zero page, indexed by Y
IX 2 Indirect X
IY 2 Indirect Y
RA 2 Relative address (Branch only)
AB 3 Absolute, no indexing
AX 3 Absolute, indexed by X
A Y 3 Absolute, indexed by Y
IN 3 Indirect, no indexing (JMP only)

The following layout illustrates the format of the vanous instruction
modes. Each box represents one byte.

Instruction formats

I (Implied) Op Code

IM (Immediate) Op Code Literal

ZP (Zero page) Op Code ZPAddr.

ZX (ZP indexed by X) Op Code ZPAddr.

ZY (ZP indexed by Y) Op Code ZPAddr.

IX (ZP indirect X) Op Code ZPAddr.

IY (ZP indirect Y) Op Code ZPAddr.

RA (Relative) Op Code Rel. Addr.

AB (Absolute) Op Code 2-Byte Address

AX(Abs. indexed by X) Op Code 2-Byte Address

AY (Abs. indexed by Y) Op Code 2-Byte Address

IN (Pure indirect) Op Code 2-Byte Jlnd. Addr. I

A further classification of instructions can be made by considering the effect

204 Introducing machine code

on registers and storage locations when they are executed. The final
classification can be made on function.

In the following pages, which describe the instructions, we will group
them initially by function under the headings of manipulation, test, arith
metic, logic, and control. Within each group we will deal with sub-groups of
instructions similarly. The table in Appendix 8 can then be used for quick
reference to the op codes for each instruction mnemonic by addressing
mode. We'll now take a look at the 6502 instruction set.

Data manipulation instructions

By 'manipulation' we mean instructions that move data about, from
memory to a register or vice versa, and between or within registers. The
6502 does not have instructions capable of moving data directly from one
set of memory locations to another, so all data must be moved via a register.
Since the registers that are available for this purpose are only one byte wide,
we need to move data one byte at a time. After BASIC, where we have
numeric variables and strings, this may appear both tiresome and slow.
However, each move takes only a few microseconds, and program loops can
be used to eliminate repetitive coding.

(a) Load instructions

The following instructions load the appropriate register with a single byte
of data retrieved from the memory location specified by the address
following the op code.

LDA Load A (accumulator)
LDX Load X (index register X)
LDY Load Y (index register Y)

(b) Store instructions

The following instructions place the contents of the register at the memory
location given by the address - the converse of load.

STA Store A (accumulator)
STX Store X (index register X)
STY Store Y (index register Y)

To move data from one location to another (say hex 1000 to hex 1001) we
would use the sequence:

LDA $1000
STA $1001

The$ sign is used here to specify a hex address (in assembler). This is one of

Introducing machine code 205

the conventions we will adopt from now on. Note that the index registers
can also be used for this purpose (when not in use as indices, of course).

(c) Register transfer instructions

This group of instructions is used to transfer data between registers
directly, i.e. without using a memory location as an intermediate store.
Since the operation is entirely between registers, and can be fully specified
by the mnemonic (and op codes), no address is required, and the instruc
tions are one-byte long, and fast in execution.

TAX Transfer A to X
TAY Transfer A to Y
TXA Transfer X to A
TYA Transfer Y to A
TSX Transfer S to X
TXS Transfer X to S

Note that there are no instructions to transfer between Y and Sor between
Xand Y.

(d) Shift instructions

These four instructions manipulate data within the accumulator or a single
byte of memory. If we consider either as a string of eight bits:

7 6 s 4 3 2 1 0

I I I I I I I I I
then the string is moved left or right by one bit position so that the endmost
bit (7 or 0, depending on the instruction) falls off the end into the cany bit in
the P-register. The vacated bit position is filled with a zero or from the
previous contents of the carry bit (again, depending on the instruction).

ASL Arithmetic shift left.
LSR Logical shift right.
ROR Rotate right.
ROL Rotate left.

The accumulator is the only register which can have its contents shifted
directly. Note that both types of shift do not take negative numbers into
account. Bit 7 takes the value of 0 in LSR (which indicates a positive
number) and the previous value of bit 6 for ASL (which may be either 0 or
1, positive or negative sign).

The difference between the shift (ASL, LSR) instructions and the two
rotate instructions is that the latter are effectively nine-bit rotations, since
the previous contents of the car.ry bit is shifted into the vacated bit position.

206 Introducing machine code

ROL is illustrated below as a diagram to indicated this.

carry 7 6 S 4 3 2 1 0 carry

out of bit 7 [I I I I I I I I l:J into bit 0

~·~~~~~)[CJ~~~-~--'

There are four more instructions which could be classified as manipulative,
but these have been included under 'control' because they are concerned
with stack manipulation.

Test instructions

This subset of instructions make true prog,ramming possible, since they
allow different routines to be invoked as a result of programmed decisions.
The BASIC equivalent is the 'IF ... THEN GOTO .. .' and they can therefore be
classified as conditional branches. There are however exceptions to this
classification. The compare instructions test but do not include a branch
operation; instead, this instruction sets flags in the P-register, which are
used by the conditional branch instructions.

It should be stated immediately that most (but not all) 6502 instructions
affect the flags in the P-register. You should refer to the section on
P-register flags now so that the following will be more easily understood.
The op code table in Appendix 8 shows which flags are affected by each
instruction, and can therefore be used to select the appropriate conditional
branch instructions when programming.

(a) Conditional branches

BCC Branch on carry clear (carry=0)
BCS Branch on carry set (carry= 1)
BEQ Branch if equal to zero (Z flag= 1)
BMI Branch on minus (N flag= 1)
BNE Branch on not equal to zero (Z flag = 0)
BPL Branch on plus (N flag = 0)
BVC Branch on overflow clear (V flag = 0)
BVS Branch on overflow set (V flag= 1)

P-register
c
c
z
N
z
N
v
v

All the above conditional branch instructions use relative addresses only,
i.e. one-byte addresses with range+ 129 to -126 from current instruction
byte.

(b) Compare instructions

CMP Compare data with contents of accumulator.

Introducing machine code 207

CPX Compare data with contents ofX index register.
CPY Compare data with contents ofY index register.

These instructions set the P-register flags Zand C in the following way,
which can then be tested with conditional branch instructions, as noted:

Register < data: C = 0: Test with BCC
Register = data: Z = I: Test with BEQ
Register>= data: C = I : Test with BCS
Register> data: Z = I and C = I: Test with BEQ followed by BCS

(c) Bit compare

BIT Compare and set bits in Status

The BIT instruction performs a comparison between storage and the
accumulator, and sets the Z flag to I if they are equal. Bits 7 and 6 of the
memory location are transferred to the Status register (N and V flags
respectively). The accumulator is unchanged.

Arithmetic instructions

There are only two types of arithmetic instructions implemented on the
6502. These are add and subtract operations. Multiplication and division
must be handled by sub-routines, and these can of course be affected by
repeated addition or subtraction.

(a) Arithmetic instructions

ADC
INC
INX
INV
SBC
DEC
DEX
DEY

Add with carry
Increment memory (add I)
Increment register X (add I)
Increment register Y (add I)
Subtract with carry
Decrement memory (subtract I)
Decrement register (subtract 1)
Decrement register Y (subtract 1)

The ADC and SBC need special explanation as both use the current value
of the carry flag as part of the operation. The ADC adds the data at the
specified address, plus the carry value, to the accumulator. The SBC
subtracts the data minus the inverse of the carry flag (1 if carry = 0, 0 if
carry = 1) from the accumulator. When starting a series of linked arith
metic operations the carry flag must be cleared before the first ADC and set
before the first subtract. This is achieved by the following instructions:

208 Introducing machine code

CLC Clear carry flag.
SEC Set carry flag.

The remaining instructions are relatively simple, and do not involve the
carry flag. Increment increases the value of the register or memory by 1,
decrement decreases it. Note the absence of direct accumulator increment/
decrement instructions.

(b) Decimal mode

Two other instructions which are related to arithmetic, but do not actually
perform arithmetic operations are:

SED Set decimal mode
CLD Clear decimal mode (set binary mode)

Decimal? Yes, the 6502 can also perform decimal arithmetic, as you should
perhaps have realised from the description of the P-register flags earlier on.
Decimal arithmetic is performed on data formatted as 'packed' decimal , i.e.
two binary coded decimal digits (0 to 9) per byte. It is most important, if
switching between decimal and binary arithmetic, to set decimal mode
before using decimal arithmetic, and to clear decimal mode before attempt
ing binary arithmetic. Try adding two BCD numbers in pure binary and
check the result (make both numbers greater than S).

Logic instructions

There are three logic instructions which operate at the bit level. They are
used to test combinations of bit patterns and set a flag to indicate the result.
The result is always either TRUE or FALSE, and to help you understand how
they operate we will use a diagram called a truth table. The instructions are:

AND Logical AND of data and accumulator
ORA Inclusive OR of data and accumulator
EOR Exclusive OR of data and accumulator

AND

Let us first examine AND with the following truth table. The symbol /\ is
used to represent AND.

A s· A/\B

0 0 0
0 1 0

0 0

Introducing machine code 209

A is an accumulator bit and Bis the corresponding data bit. A /\ Bis spoken
'A AND B', and is the logical result of the operation. A zero result is FALSE,

and a 1 is TRUE.

It can be seen from the table that the only combination of accumulator
and data bit values that yields a TRUE result is the last-when both bits are 1.
All other combinations yield 0 - a FALSE result.

The accumulator bits are affected and contain the results for A /\ B. This
instruction is generally used to turn off (i.e. set to 0) specific bits in a byte.

Let us assume that in the accumulator bit 0 was being used as a
programmed flag (or switch) and we wanted to zeroise it without affecting
any other bits. We would achieve this by ANDing the accumulator with
binary 11111110 (hex FE).

Bits: 7 6 5 4 3 2 1 0

I I I I I 0 I l I 0 I 0 I 0 I l I Accumulator before operation

AND

I I I 1 I I I 1 I I I I I l I 0 I Data (mask)

Result I 1 I I I 0 I l I 0 I 0 I 0 I 0 I Accumulator after operation

Check the result at each bit position against the truth table. Note that only
bit 0 has been modified. We use the term 'mask' to describe data which is
being used solely to modify the contents of the accumulator.

ORA

The ORA instruction is used to turn bits on (i.e. set them to 1). Look at the
following truth table for ORA:

A B AVB

0 0 0
0 1
1 0
1 1

In this case if either (or both) bits in A and B are 1, the result is 1. Using the
same examples as before, we now wish to set bit 0 on again, i.e. back to 1.

Bits: 7 6 5 4 3 2 1 0

I I I 1 I 0 I l I 0 I 0 I 0 I 0 I Accumulator before operation

ORA

l0l0l0l0l0l0l0lll Dua(m~k)
Result I 1 I 1 I 0 I 1 I 0 I 010 I l I Accumulator after operation

210 Introducing machine code

The symbol V represents OR. We can refer to the operation as
'accumulator V mask' .

EOR

The EOR or exclusive or provides a TRUE (i.e. 1) result if one and only one
of the two corresponding bits is 1, i.e. if one bit is 1 and the corresponding
bit is 0. Here's the truth table:

A B AVB

0 0 0
0 1 1

0
0

V is the symbol used for exclusive OR. This instruction is used to turn
bits on if they are off, and off if they are on, i.e. to change the state of a bit,
for use, say, as a 'toggle' switch.

Bits: 7 6 5 4 3 2 1 0

I l I 0 I l I 0 I l I 0 I 1 I 0 I Accumulator before operation

EOR

I 1 I 1 I 1 I l I 1 I 1 I l I I I Data (mask)

Result I 0 I I I 0 I l I 0 I 1 I 0 I 1 I Accumulator after operation

In this example we have modified several bits in one operation. This can
also be done with AND and ORA. Try EOR on the accumulator above with
a mask of 00000000 (hex 00).

Control instructions

These instructions, with the exception of NOP, CLI and SEI, are used in
modifying the sequence of a program, and in altering the flow of conrol.

NOP No OPeration (do nothing)
JMP JuMP or unconditional branch
JSR Jump to SubRoutine
RTS ReTurn from Subroutine
PUA PusH A onto stack
PUP PusH P onto stack
PLA PulL A from stack
PLP PulL P from stack
BRK BReaK
RTI ReTurn from Interrupt
SEI SEt Interrupt disable flag
CLI CLear Interrupt disable flag

Introducing machine code 211

(a) NOP
This is a one-byte instruction which is used to delay the execution of a
routine (by two cycles) or to patch-out instructions, if you wish to block a
section of code. As you might have gathered it simply does nothing, and is
extremely useful. When used to patch-out instructions, it must be used to
replace every byte of the instruction, so that two or three NOP instructions
may be required.

(b)JMP
This is the machine-code equivalent of a BASIC GOTO. The sequence of
control is transferred directly to the specified address.

(c) JSR and RTS
These are extremely important instructions in the 6502 instruction set,
since JSR causes a jump to a routine elsewhere in the program, and the
RTS instruction provides a return to the instruction following the jump.
They are directly equivalent to the BASIC GOSUB and RETURN instructions.
This is made possible by the way the Stack operates, and we should now
discuss the Stack.

The Stack is a structure composed of things piled one on top of another.
The things in this case are addresses, taken from the Program Counter (PC)
Register. Why do we need a Stack, and how do we use it? Let's consider an
example. Overleaf is a possible control flow in a machine-code program.

Let us consider the following example. A JSR instruction at location $0200
calls a subroutine at location $0300. At the time of the call the PC-Register
contains $0203. The address of the instruction following the JSR. The 6502
will place this address in the stack and then jump to location $0300. At
location $0300 another JSR is executed, to a subroutine at $0400. The PCS
contents ($0303) now have to be saved, and are placed after the first address
in the stack.

Subroutine $0400 executes to completion, and terminates with an RTS
instruction. This causes the last address placed in the Stack to be loaded
into the program counter ($0303) and a jump to the PC address to be taken
to the instruction following the second JSR. Similarly, when subroutine
$0300 terminates with an RTS, the PC is loaded with $0203 and execution
continues from this address.

Only one question remains - how is the right address selected from the
Stack? The answer lies in the Stack Pointer Register (s) which always points
to the next available Stack location, and is automatically up-dated (for
wards) by the JSR and (upwards) by the RTS instructions.

Finally, the 6502 Stack resides in page 1 of memory, i.e. hex 100 to hex
lFF. Since the Stack Pointer is an 8-bit register the leading 1 in both
addresses is implied- that is, the 6502 will always assume an extra bit before
the address. Also, the 6502 Stack is upside down, i.e. the first available

/ ./'"° ..

212 Introducing machine code

197
200 JSR $0300 I SP-> LJ 1-~ 203

I 206 . .. , ,

I
.... (1)

....

1 SPc>

[6)

[g 300 JSR $0400
303 I

3

305 ,

I
(5)

i (2)

330 j
333 RTS 'End Sub!

400
(4) 403 1 · L 405

• .. . (3)

~:~·RTS 'End Sub2 i

~.

Introducing machine code 213

Stack location is at the bottom (High Address) of the Stack, and the Stack
Pointer is decremented, on each JSR, by 2 (Addresses stored are absolute,
16-bit, from the PCR).

The example given above demonstrated two nested JSR's, with one JSR
issued from within the first call (JSR'ed) routine. Since the Stack is 256
bytes long (1 page), and the PC two bytes long, 128 levels of nesting are
possible. In practice, it is most unlikely that this degree of nesting will be
used, so page 1 locations below the agreed low address may be used by the
program if required.

Push and Pull instructions

These four instructions place and retrieve Accumulator and P-Register
(Status bits) on and from the Stack. It is sometimes necessary to save and
restore the P-Register status flags so they are as they were before a
subroutine call. The PHP instruction will place the P-Register contents on
the Stack and update the Stack Pointer. The PLP will restore the P
Register from the Stack address indicated by the Stack Pointer, and then
update the Stack Pointer.

The Accumulator contents may be similarly saved and restored with the
PUA and PLA instructions. Remember that the RTS takes the last two
bytes from the top of the Stack, and ensure that Pushes and Pulls are
ordered so that the RTS does not get erroneous information by trying to
branch to the contents of the saved Accumulator or P-Register.

Interrupts

A complete discourse of Interrupts is beyond the scope of this chapter, and
we will therefore skim very lightly over the subject. The reader is referred
to any of several available reference texts on the 6502, if he feels the need to
explore this area any further.

Briefly, the 6502 has two types of interrupts: hardware and software.
When an interrupt occurs the contents of the PC-Register and the P
Register are deposited on the Stack, and a Jump is taken to an indirect
address stored in high memory. These addresses are known as Vectors, and
the process as Vectoring. The subroutine at the final address services the
interrupt, and then returns to the point at which normal execution was
interrupted via an RTI instruction which restores the P-Register and
PC-Register from the Stack and updates the Stack Pointer.

The BRK instruction is a software interrupt instruction, which causes a
Jump to the indirect address at locations FFFE, FFFF. These addresses are
normally in Orie ROM (Read Only Memory) and therefore not directly
modifiable. We will leave BRK at this point, and return to it later.

The last two instructions are the SEI and CL T . These instructions are

214 Introducing machine code

used to Set or Clear the Interrupt disable flag in the P-Register. When set,
all interrupts are disabled, i.e. ignored, with the exception of one type of
hardware interrupt - the NMI, appropriately, Non-Maskable Interrupt.
Disabling of interrupts is necessary when it is essential to complete a
process in a specific time, usually very small, because the process is itself
time-critical.

Machine Code programming conventions and rules

We have now completed the 6502 instruction set, and are ready to start
programming. A few conventions will assist us.

We introduced the$ earlier on to indicate hex data. We now introduce
the # to indicate a literal, i.e. an Immediate operand, and % to denote
binary.

Machine-code programming has two stages - the symbolic and the
code-level stages. For example:

LDA#$00
in symbolic - Load hex Literal 00 to Accumulator

A900
is code level (LDA iinmediate=hexA9) .

We normally develop the program at symbolic level, and then translate it to
code. This is called assembly, and, if done manually, hand assembly.

IMPORTANT

Up to this point we have written all two-byte hex addresses as $hhl I, where
hh is the High Order byte and 11 the Low Order byte. This is satisfactory
and desirable at the symbolic level. However, the 6502 expects 2-byte
addresses in reverse sequence and machine code must be written this way.
Thus we code an address as $llhh. For example:
LDA $103E (Load Accumulator from Absolute Address 103E)

would be coded as:

AD 3E 10 (LDA Absolute Op Code= AD)

This must be remembered when translating from symbolic to code forms.
Now let us start programming, using some useful machine-code routines as
examples.

Machine code examples

Most programs will use some arithmetic, and it therefore seems appropriate
to commence with examples of arithmetic routines. We'll start with the
addition of two single byte binary numbers, located at hex 500 and hex 501,

Introducing machine code 215

the result to be stored in hex 502, assuming that the sum can be stored in a
single byte.

CLC Clear Carry Flag
LDA $500
ADC $501
STA $502

Load First number into Accumulator
Add second number into Accumulator
Store result

Easy, wasn't it? Note the use of CLC before the ADC.

Now let us try it again, this time with two 3-byte binary numbers, located
at $501-$503, $504-$506, storing the result at$507-$509, and assuming,
as before, that the result will fit into 3 bytes. We could repeat the last three
instructions for each byte to be added, but this is inefficient. We will use
indexing instead. We will also assume, for this example, that the numbers
are being stored in memory with the high-order bit first (i.e. lowest
address), in the conventional manner. It could be stored the other way
around (low-order byte first) in the same way as two byte addresses - this is
up to the programmer. Here is the program:

Address Instruction:

600
601
603
606
609
60C
60D

CLC
LDX#$03
LDA$500,X
STA$503,X
STA$506, X
DEX
BNE * -12

Clear Carry flag
Load X with 03 (literal)
Load From Address $500 + .X
Add from Address. $503 + X
Store result Address $506 + X
Decrement X by 1
Go back to$603 ifX<>0

Both programs shown have been written in a symbolic form - they will need
translation into machine code before they can be used. The# indicates that
the following characters constitute a literal operand, which will be stored as
part of the instruction, in immediate address form. The use of "X"
indicates that the address preceding is to be indexed by register X - i.e. the
final address for data is the sum of the first address plus the contents of
register X. The "*" in the last instruction means the contents of the
PRogram Counter after the instruction has been fetched and decoded, but
before it has been executed. Now let us look at the machine code.

Address Mode

600
601
603
606
609
60C
60D

18
A203
BD00 50
7D03 50
9D0650
CA
D0F4

Implied
Immediate
Absolute, X
Absolute, X
Absolute, X
Implied
Relative

216 Introducing machine code

To understand the logic of the process, we could consider the problem
expressed in diagramatic form, using the flow-charting method. Such a
flow-chart should be constructed before any attempt at coding, as it
simplifies the visualisation of logic requirements, and therefore the pro
gramming task. It is surprising how much time this can save. Refer to any
general text on programming if you are interested.

Note the use of index decrementing to address data bytes in ascending
order. The following may make it clearer:

Address
500
500
500

lndexX
3
2
1

Final Address
503
502
501

If the number $12345 was stored in locations $501 - $503, the low order
byte ($45) would be taken first, then the middle byte ($23), then the high
order byte ($1), which is the correct order of addition.

If we stored numbers in the same way as addresses (compare the
instructions at location $603 in the symbolic and machine code examples),
we would need to increment (increase by I) the register - number $12345
would be stored as $54321- and test (with a compare) for an index value of
3. The method shown saves one instruction and is easier to follow.
Appendix 8 contains a table of instructions or Op codes, in each addressing
mode.

Subtraction routines can be written in the same way, using the addition
routines as examples. Remember to use SEC (Set Carry) in place of the
CLC, though. An alternative method is to use 2's-complement and perform
subtraction by the addition of a negative number.

Multiplication and division can also be performed by repetitive addition.
However, it is more efficient to use shifted addition methods. You should
refer to one of the standard texts such as Leventhal or Zaks for suitable
routines.

Since this is an Orie companion, we will next consider routines that are
designed for this machine specifically. Screen handling is a good area to
start with so we will develop a routine to move a character around the
screen, using keyboard control. There are two ways of doing this - by
directly accessing the screen area, and using Oric's own routines by calling
them from our machine-code program. Keyboard access will use the latter
method for simplicity.

This routine will use the Orie arrow keys to move a character around the
screen in the direction of the arrow key. We will restrict character move
ment to rows 2 - 25 and columns 2 to 39. (Avoiding the first two lines and
the attribute columns).

The TEXT screen consists of 27 rows of 40 columns, although the leftmost

Introducing machine code 217

columns are reserved for colours and are not usually used in TEXT or LORES

modes.
The screen occupies memory locations $BB80 to $BFE0 (48K machines)

or $3B80 to $3FE0 (16K machines). The program will assume a 48K
machine. Users of 16K machines must subtract hex 8000 from all screen
addresses to use the routine.

t00 HIMEM 3276/:REM $/FFF
101
110 FOR X=0 TO 113
120 ~EAD CODE
130 POKE 32?68+X,CODE
140 NEXT X
150
160 CLS:PRINT "CURSOR KEYS TO MOIJE OR S

PACE TO END"
170 POKE 0,#00:POKE 1,ttBB:REM SCREEN
180 POKE 2,tt02:POKE 3,tt02:REM COL/ROW
130 POKE #24E,1 :POKE tt24F,1 :REM KBD
200
210 FOR X=l TO 10
220 CALL #8000
230 NEXT X
240 IF KEY$0" "THEN GOTO 210
250 POKE #24E,32:POKE tt24F,4
260 STOP
1000 REM OP ADOR
1010 DATA ttD8
1020 DATA ttA9,tt20
1030 DATA #A4,tt02
1040 DATA #91,#00
1050 DATA #20,#38,#02
1060 DATA #10,#51
10?0 DATA ttA4,tt02
1080 DATA #C9,tt08
1090 DATA #90,#48
1100 DATA ttF0,tt00
1110 DATA ttC9,tt08
1120 DATA ttF0,tt13

SYMBOL! C ADDR
'CLO 8000
'LOA #$20
'LOY COL 3
'STA C$00J,Y 5
'JSR GTORKB ?
·' BPL DISPL Y A
)LOY COL
'CMP #$08
'BCC OJSPLY
'BEQ LEFT
'CMP #$1 l
'BEQ UP

218 Introducing machine code

1130 DATA .it80,.it43 'BCS DlSPLY
1140 DATA .#C9,.it09 'CMP -1t$09
1150 DATA .itF0,.it0S 'SEQ RIGHT
1160 DATA .#4C,.it41,#80 'JMP DOWN
11 .70 DATA #C0,#02 'LEFT CPI #$02
1180 DATA .#F0,.it38 'SEQ DlSPLI
1190 DATA .#88 'DEi
1200 DATA .it4C,#50,#80 'JMP DJSPLI
1210 DATA .itC0,.it2? 'RJGHTCPI -lt$2? (39)
1220 DATA .itF0,#30 'SEQ DlSPLI
1230 DATA .#CS 'lNI
1240 DATA #4C,.#50,.tt80 'JMP DlSPLI
1250 DATA #A6,#03 'UP LOX ROW
1260 DATA #Hl, #02 'CPX #$02
i2?0 DATA #F0,#26 'SEQ 01SPLI
1275 DATA .itC6,#03 'DEC ROW
1280 DATA .itEA,#EA 'NOP,NOP
1290 DATA .#20,#64,#80 'JSR SUB
1300 DATA #4C,#50,#80 'JMP DlSPLI
1J10 DATA .itA6,#03 ,.DOWN LOX ROW
1320 DATA #E0,#18 'CP .. f .#$18
1330 DATA #F0,#18 ,.SEQ DlSPLI
1335 DATA #E6,#03 ,. INC ROW
1340 DATA #A9,#28 'LOA .J:l$28 (40)
1350 DATA .J:l20, .J:l51, #80 'JSR ADD
1360 DATA fl4C, fl50, #80 'JMP DlSPLI
1370 DATA fl 18 'ADD CLC
1380 DATA #65,#00 'ADC $00
1390 DATA #85,#00 'STA $00
1400 DATA .J:IA9, #00 'LOA #$00
1410 DATA #65,#01 'ADC $01
1420 DATA #85,#01 'STA $01
1430 DATA .it60 'RTS
1440 DATA .itA9,#58'0lSPLILDA #$58 "X"
1450 DATA #91, #00 'STA ($00),1
1460 DATA .#84,#02 'STY COL
1470 DATA #60 'RTS
1480 DATA #38 'SUB SEC

Introducing machine code 219

1490 DATA -ltAS,#00 'LOA $00
1500 DATA -itE9, .it28 'SBC #$28
1510 DATA .j:l85, #00 'STA $00
Jj20 DATA -l*A5, #01 'LOA $01
1530 DATA -ltE9, -1*00 'SBC #$00
i540 DATA -1*85,#01 'STA $01
1550 DATA -lt60 'RTS

The following is an explanation of the program:
Line 100 sets the upper limit of memory for BASIC programs. In this

example we have allowed about 6K for our machine-code programs - in fact
only 114 bytes are used and the figure was chosen to allow the program to
start at hex 8000. In practice, where machine-code routines are being used
with BASIC programs it is preferable to subtract the size of the machine-code
routines from the current HIMEM position, this being obtained by a
PRINT DEEK(#A6), and then using HIMEM as shown to set the limit for BASIC.

Lines 110 to 140 constitute a loop which extracts the machine code from
the DATA statements and loads it to the specified addresses. This routine is
called a LOADER, and is the conventional way of using BASIC to load
machine-code routines.

Line 160 clears the screen.
Line 170 sets the screen start address ($BBD0 in our example) into

known Page 0 locations (hex 0, + 1). Note the "backward" orientation of the
address.

Line 180 sets column and row minima in Page 0 locations 2 and 3.
Line 190 sets the keyboard delay and repeat rates to the fastest speeds.

These are system constants for the Orie operating system, and more of these
will be found in the Appendix 9.

Lines 210 to 230 form a loop to call our machine-code subroutine ten
times. Note that # in BASIC means Hexadecimal, but is used in Assembler
or Symbolic code as a literal sign. Line 240 tests for a space-bar character,
which we use in this routine to go back to our main program. When found,
line 250 resets the keyboard delay and repeat to the original values of 32 and
4, and halts execution of the program.

We now come to the machine-code routine itself. The routine has been
coded with one instruction per DATA statement, for clarity, and the
symbolic code (or Assembly Language code) has been included in the same
line as a comment.

Lines 1010 to 1160 test the incoming keyboard character for cursor
control codes (i.e. the arrow codes), and take a branch to the appropriate
routines (labelled LEFT, RIGHT, UP and DOWN) when found, exitting to the
DISPLAY routine at the end of the program if any other character is entered.

220 Introducing machine code

The first few instructions set the arithmetic mode (CLD), and clear the
previously displayed character ("X") from the screen. Line 1040 uses
indirect Y addressing to store a blank over the previous "X" by indexing
the screen pointer in hex 00+01 by the column position in hex 02. Line
1050 calls the system keyboard routine (details in Appendix 9) to read the
keyboard and return the input character in register A.

Line 1010 reloads the column position in register Y for subsequent use.
Line 1170 to 1240 are the LEFT and RIGHT routines, which decrement or

increment the column position by 1, after testing for the minimum and
maximum column values.

Line 1250 to 1360 are the UP and DOWN routines. These modify the Row
address and test for minimum and maximum allowable values. If within
limits the routines call the SUBTRACT and ADD routines with a JSR
instruction (lines 1370 to 1430 and lines 1480 to 1550 respectively), which
modify the screen address in locations 00+01 by a value of decimal 40
(characters per line). On return from these routines a JMP is taken to the
final routine in the program, DISPLAY.

Lines 1440 to 1470 constitute the DISPLAY routine. This routine loads
register A with ASCII "X", then puts it on the screen- via an indirect- Y ST A
instruction, where Y (the column) modifies the screen address (in hex 00,
01). The (updated) value ofY is then re-stored in hex 02 and the program
exits via an RTS to the CALLing BASIC program at line 230.

Note line 1280 - two NOP instructions have been used to patch out
another instruction. If NOP was not available all instruction addresses
below this statement would have had to have been modified by 2 - very
time-consuming. Note the use of relative addressing in the Branch instruc
tions - try working them out using the symbolic addresses as a guide.

Now key in the program and use the arrow keys to move the "X" around
the screen.

CALL

The previous machine-code program was invoked by the CALL command in
BASIC. This is the simplest method of entering a machine-code program and
involves nothing more than setting the address of the program in the CALL
statement, in either decimal or hex (preceded by#). There are other ways
of invoking machine-code logic, but the main advantage of the CALL is that
several machine-code routines can be easily accessed, by re-using the CALL
with different addresses.

!(SHRIEK)

This operator allows new BASIC commands (written in machine code) to be
defined and used. The address of the machine-code routine must first be

Introducing machine code 221

placed in locations $2FS and $2F6 via a DOKE instruction. The command is
then executed by entering ! followed by any parameters needed by the
machine-code routine. The system will store the parameters in the input
buffer when the ! is encountered. To access the parameters it is necessary to
access the input buffer, which occupies locations hex 35 to hex 84. The logic
required to do this must include all syntax checking and parameter valid
ation, and can therefore be fairly complex. To avoid some of this complexity
it is possible to use a system routine located in Page Zero hex E2, which
returns the contents of the input buffer in the A Register one character at a
time. JSR $00E2 will accomplish this.

A third method is to use the address of the input buffer in locations $E9
and $EA, indexed by (say) Register Y, to obtain each character in turn,
incrementing Y each time, using an indirect - Y LDA instruction.

If multiple ! commands are required, remember to precede each with
DOKE #2FS, address-of-routine.

& (AMPERSAND)

The ampersand symbol (&) may be used to define additional functions for
use within a BASIC program. The function definition must be written in
machine code, and the start address of the definition routine DOKEd into
location #2FC before the function is called. The syntax requires an
argument within brackets following &, and this value is placed in the
floating point accumulator, for use by the routine. The following example
provides a function which returns the current cursor row:

10 REM** DEFINE & TO GIUE CURRENT
20 REM** ROW OF CURSOR
30 FOR 1=0 TO 5
40 READ ox:POKE #400+1,0X
50 NEXT
60 DOKE fl2FC,fl400 'Sta.rt o.ddress

65 REM lo ad y with ClJRRUw :vo.lue

70 DATA flflC, fl68, #02
:;:,l REi"l enter BrlSl C routine to get

single byte into F.P. Accumuio.tor

80 DATA J:14C,tt86,tt04

This provides a means of accessing the cursor row (CURROW) system
variable, with the floating point accumulator holding the returned value. &

(0) will return this value from within BASIC. The floating point accumulator
occupies six bytes from #D0 to #DS. Numbers are stored with the first
byte holding the exponent value plus 128. Four bytes hold the mantissa,

222 Introducing machine code

high byte being # D 1, and the most significant bit representing 2 j -1, and the
least significant bit of #D4 holding 2 j -32.#DS is a sign byte, with 0
representing positive, and #FF negative. The value is thus held as mantissa*
2 j exponent. Zero has a unique representation, with the exponent set to zero.

The following program will correct the problem with some cassette
recorders referred to in Chapter 6. The program loads into locations #281 to
#2BF, avoiding #2A9 to #2B0. When CLOADed it copies another program
into locations #221 to #22A, and changes the fast interrupt vector (at #245
and #246) to point to it. This zeroes the error flag at #2Bl each time an
interrupt occurs. Unless auto-search is inhibited the following file on tape is
then loaded.

10 REM**Cassette Loa~ing Bogus Error
15 REM**Recti f ication Program
20 FOR 0=0 TO 39
30 READ Nx:POKE #281+D,Nx
40 NEXT
50 FOR 0=0 TO 13
60 READ Nx;POKE #2Bl+D,Nx
/0 NEXT
80 PRINT "SET CflSSETTE TO RECORD, PRESS

A KEY. PROGRAM NAME IS '*'":GET A$
90 CSAUE II* II' A#281 'E#28F' AUTO 'add 's fo

r slow save
100 DATA #08,#78,#AO,#F9,#FF
110 DATA #C9,#01,#D0,#28
120 DATA #AD,#86,#E4,#C9,#A2
130 DATA #00,#15,#A0,#09
140 DATA #89,#85,#02,#99,#21,fl02
150 DATA #88,#10,#F7,#A9,#21.
160 Dr1TA #8D,#45,#02,#A9,#02
170 DATA #8D,#46,fl02,#4C,#67,#E8
180
190 DATA #00,fl4C,fl86,flE7,fl48
200 DATA #A9,fl00,fl8D,fl81,fl02,fl68
210 DATA .U4C, #22, #ff
220 REM**Inh i bit o.uto-seo.rch for next

** f i le by POKE i ng #60
230 REM** into ioco.tions #282 o.nci fl2A6

11 Input/Output

The Orie has flexible input/output facilities, which enable the enthusiast
with some experience of simple electronics to control and monitor external
events using fairly straightforward interfacing techniques.

The memory map given in Appendix S provides the information neces
sary to perform such interfacing. There are two usable areas:

1. Top of Page 3 memory, locations from #03FF downwards.
2. Bottom of Page 3 memory #0300 to #030F which in fact contain the 16

registers, output ports, etc. of the 6522 VIA (Versatile Interface Ada
pator) chip inside the Orie. Of the 16 pin-outs, 8 provide the eight bits of
the printer interface and are also multiplexed to the sound chip. Certain
of the remaining 8 connect to the keyboard interface. This chip is
responsible for a multitude of activities and hence must be used with
care.

The area specified in 1 above can be configured for interfacing by using the
expansion bus, which gives access to the necessary control pin-outs. The
memory locations in 2 above can be interfaced using the printer port.

Any memory location in the spare memory area between # BFE0 and
BFFF could be used as output or input by means of the appropriate POKE

or PEEK command. External devices configured to any location would be
simply seen as a memory address which can be read from or written to.

This is RAM area which is disabled by taking the MAP pin low (MAP).

224 lnpuVOutput

It should be pointed outthat MAP will disable the internal ROM, should it
be accessed at the same time. This feature is used by the Orie MICRO DISC
drives, and the complexity ofl/O using this area, as well as a possible clash
with Orie peripherals, makes this area unsuitable for our purposes.
Although we have confined our discussion to the area between #BFE0 and
#BFFF any RAM area, except #0300 to #030F, could be disabled by MAP

and replaced by external memory or other suitably interfaced devices.

Top of Page 3 memory: #03FF downwards

This area is probably the easiest to interface and uses the 1/0 pin as an output
signal low and, providing the top of Page 3 -is being used, i.e. locations
above #030F, also uses the 110 CONTROL signal which, as before, needs to be
pulled low (110 CONTROL), in order to disable the internal 6522 VIA chip.

The I/O pin automatically goes low whenever an address in the range
#0300 to #03FF is being accessed using a POKE or PEEK coiv.mand, but
addres~es #0300 to #030F are_ used by the internal 6522 VIA, for output to
the printer and sound chip, ~o that disabling the 6522, when used in this
range, by .means of the 1io CONTROL input pin defeats the_ purpose of
addressing these locations. Hence, 1/0 CONTROL should be applied in the
range #0310 to #03FF only for the purpose of interfacing to external
devices. These locations should be utilised from location #03FF down
wards for user 1/0 since Orie peripherals will be designed to use addresses
#0300 upwards. In this way any conflict will be postponed until the last
possible moment!

As before the RiW (READ/WRITE) pin is available for gating/decoding,
being low on POKE (i.e. writing to) and high on PEEK (i.e. reading from).
Typical circuit examples are given in Appendix 10.

Bottom of Page 3 memory: #0300 to #030F

This printer interface area is in some respects the trickiest area to use, but
also the most challenging. These memory locations actually control the
functions of the 6522 VIA internal to the Orie, which, given its design, are
many and varied.

Firstly, the memory locations #0300 to #030F are the 16 controlling
registers of the VIA. To go through them all is not necessary (thankfully),
but interested readers are referred to data sheets from the manufacturers or
supplier.

We need to know the functions of the first four locations (i.e. 4 of the
6522 internal registers) and the last one, #0300, #0301, #0302, #0303 and
#030F. The 6522 chip has two sets of 8 data lines, called port A and port B.

Input/Output 225

These data lines are read from or written into through #0300 for port Band
#0301 for port A, ORB and ORA respectively. However, initially it is
necessary to specify whether the data lines are to be read from (i.e. used as
input) or written into (i.e. used as output). This is done by writing to #0302
for port Band #0303 for port A, DDRB and DDRA respectively. These stand
for Data Direction Registers A or B, Direction in this case meaning input or
output. The 7 lines of port B (B0, Bl, B2, B3, BS, B6, B7) are configured
internally, whilst B4 is the STROBE pin on the printer interface.

All 8 lines of port A (A0, Al, A2, A3, A4, AS, A6, A7) are brought to the
outside and form the data pins of the printer interface (pins 3, S, 7, 9, 11,
13, IS, 17 respectively).

Before using the printer port for output the following must be noted.
Usually the 6S22 port A is a latching output port, i.e. once the data is output
to port A it stops there. However, the Oric's internal 6S22 is used for many
functions and other data transfers occur which use port A, since this port is
also multiplexed to the sound chip, which in turn is connected to the
keyboard interface. Therefore simply POKEing a data byte to port A, will not
latch this data, and latching has to be done externally. There is a STROBE pin
on the printer socket, which is in fact line B4 of port B, used by the VIA to
tell a printer that data is ready. This pin provides a negative pulse (it is
normally high) and can be used as the latching pulse to latch data on to the
outputs of an external device at the appropriate time. In addition there is
also the 1/0 pin on the expansion bus, which will go low when the VIA is
accessed, since the VIA is mapped on to Page 3 of memory. This too can be
used as a latching pulse, producing, as with B4, a high-to-low transition.
Typical latches which can be used are shown in Appendix 10.

The software to perform an output via port A of the internal Orie 6S22
can be as follows.

Firstly the LPRINT command, LPRINT CHR$(i), will output the binary
pattern corresponding to the value of i. If i = 1, then the bit pattern will look
like:

00000001
D7 D0

and pin 3 of the printer interface socket will go high (SV).
If i=4, the bit pattern will look like:

00000100
D7 D0

with pin 7 of the printer socket going high, and so on.
This command is actually a machine-code subroutine which outputs data

and a STROBE signal at the appropriate time, when data is on the lines.
If however, the POKE command is used then data has to be POKEed to

location #0301, as already mentioned, through which it transfers to port A.

226 lnpuVOutput

Thus we need to POKE #0301, i, where i lies between 0 and 255.
The problem is the latching pulse. B0 to B7 are controlled through ORB,

i.e. #0300. B4 (the STROBE) is normally high, so outputting a 0 to B4 will
produce the STROBE:

POKE #0300, i

wherei= xxx0xxxx
D7 D0

For example, with i as 175 we will have B4 equal to 0. The sequence then
becomes:

POKE #0301, i (output data)
POKE #0300, 175 (latch)

However, it appears necessary to interpose a time delay between the STROBE
and the output latch to provide reliable operation. As an alternative to the
above sequence, the POKE #0301, i statement accesses Page 3, therefore 110

will go low at the appropriate time, and this can be used as a latching pulse.
For an input into the printer port A, the 6522 must first be told that port

A is now to receive and not transmit. Latching is not a problem here, but,
again, either the 110 or R/W pin could be used to enable a buffer chip
(tri-state) during a read operation. Port A of the 6522 is programmed for
output on power-on, and therefore it is necessary to program for input.
This can be done by POKEing 0 into location #0303, as this location actually
maps the Data Direction Register for port A (DORA), as previously men
tioned, so:

POKE #0303,0

actually sets all 8 bits of port A for input:

DDRA
00000000

D7 D0

while:

POKE #0303,3

sets bits D0 and D 1 for output, and D2 to D7 for input, of port A:

DDRA3:
D7 D0

0 0 0 0 0 0 1 1
input pins output

pins

so the sequence of software is:

10 POKE#0303,0
15 REM set all bits of port A as inputs
20 PRINT PEEK(#0301)
25 REM read port A
30 POKE#0303,255
35 REM set the ORIC 6522 back as an output device

lnpuVOutput 227

Line 30 is essential, otherwise the user will find that after 10 and 20 without
30, the keyboard will be disabled.

Initially, before any data is input, PRINT PEEK(#0301) will give 255, since
all data lines of the 6522 are pulled high by pull-up resistors.

Information on the techniques needed for addressing and decoding data,
and sample interfacing circuitry, is given in Appendix 10 and 11.

Appendix 1
ASCII Character Codes
Codes0-31

CODE CHARACTER Control Code

0 Null
1 Copy CTRL-A

2
3 Break CTRL-C

4 Double line printing CTRL-D

5
6 Keyclick CTRL-F

7 Bell (PING) CTRL-G

8 Backspace (Cursor left) CTRL-H

9 Cursor right CTRL-1

10 Line feed (Cursor down) CTRL- J

11 Cursor up CTRL-K

12 Clear screen CTRL-L

13 RETURN CTRL-M

14 Clear line CTRL-N

15 Disable screen CTRL-0

16
17 Cursor CTRL-Q

18
19 Screen CTRL-S

20 Caps (upper case) CTRL-T

21
22
23
24 Cancel line CTRL-X

25
26
27 ESC (Escape)
28
29
30
31
32 Space

Appendix 1 - ASCII Character Codes 229

Codes 33-127

The alternate characters are produced in the LORES 1 mode. LORES 0 uses
standard characters.

STANDARD ALTERNATE STANDARD ALTERNATE

CODE CHARACTER CHARACTER CODE CHARACTER CHARACTER

33 33 • 71 G 71 ~

34 34 72 H 72 I

35 # 35 - 73 73 ' 36 $ 36 74 l 74 I
37 % 37 I 75 K 75 ..
38 & 38 ... 76 L 76 ..
39 39 • 77 M 77 ,.
40 40 78 N 78 ~

41 41 ~ 79 0 79 •
42 * 42 I 80 p am -
43 + 43 • 81 Q 81 -•
44 44 82 R 82 -•
45 45 r 83 s 83 --
46 46 "I 84 T 84 •
47 47 • 85 u 85 r
48 0 48 .. 86 v 86 IC
49 49 • 87 w 87 II: •
50 2 50 • 88 x 88 • •
51 3 51 • 89 y 89 , -
52 4 52 I 90 z 90 ,
53 5 53 I 91 91 :I
54 6 54 .. 92 92 •
55 7 55 L 93 l 93 •
56 8 56 .. 94 t 94 •
57 9 57 ~ 95 £ 95 I
58 58 .. 96 © 96 IB
59 59 ~ 97 a 97 I
60 < 6"1 .. 98 b 98 IH

61 61 • 99 99 DI

62 > 62 .. 100 d 100 IB

63 63 • 101 c 101 IH

64 (<1 64 • 102 102 IB

65 A 65 • 103 g 103 IB •
66 B 66 • . 104 h 104 IB

67 c 67 • - 105 105 IB

68 D 68 JI 106 i 106 18
69 E 69 t 107 k 107 ID
70 F 70 oC 108 108 II

230 Appendix 1 -ASCII Character Codes

STANDARD ALTERNATE STANDARD ALTERNATE
CODE CHARACTER CHARACTER CODE CHARACTER CHARACTER

109 m 109 II 119 w

110 n 110 II 120 x

Ill 0 111 18 121 y

112 p 122 z

113 q 123

114 124

115 125

116 126

117 u 127 DEL 127 DEL
118 v

Codes 128-151

When you issue a PRINT statement with a character whose ASCII code is
greater than 128, PRINT will strip the most significant bit (with 128) from
the character and place the remaining code directly on the screen. Note that
these 'stripped' codes are not treated as control toggles, but directly entered
as attributes. These codes can only be PRINTed using CHR$(i) and hence only
operate on the low resolution screens. (If you try using these codes on the
HIRES screen the Orie will return an illegal quantity error report.) For
example:

100 PRINT CHR$(132); CHR$(145);"ATTRIBUTE"

This statement will PRINT the string "ATTRIBUTE" in blue letters on a red
background. Be warned that codes 138, 139, 142, 149, which generate
double height characters, require two identical program lines to produce
the desired effect.

CODE RESULT

128 Returns black foreground (text/graphics)
129 Returns red foreground (text/graphics)
130 Returns green foreground (text/graphics)
131 Returns yellow foreground (text/graphics)
132 Returns blue foreground (text/graphics)
133 Returns magenta foreground (text/graphics)
134 Returns cyan foreground (text/graphics)
135 Returns white foreground (text/graphics)
136 Returns black foreground (text/graphics)
137 Returns graphics character
138 Returns double-height characters (text- see note above)
139 Returns double-height characters (graphics - see note above)

Appendix 1 - ASCII Character Codes 231

140 Returns flashing characters (text)
141 Returns flashing characters (graphics)
142 Returns flashing double-height characters (text)
143 Returns flashing double-height characters (graphics)
144 Returns black background
145 Returns red background
146 Returns green background
14 7 Returns yellow background
148 Returns blue background
149 Returns magenta background
150 Returns cyan background
151 Returns white background

Appendix 2
Escape Codes

The Escape codes available on the Orie are as given below. They insert
attributes into a character position of the screen display, and may be
entered directly from the keyboard, using the ESC key followed by the
character, or placed in a program using PRINT CHR$(27), followed by the
character in a string form (within quotes or using CHR$).

ESCAPE@
ESCAPE A
ESCAPEE
ESCAPEC
ESCAPED
ESCAPEE
ESCAPEF
ESCAPEG
ESCAPEH
ESCAPE I
ESCAPE}
ESCAPEK
ESCAPEL
ESCAPEM
ESCAPEN
ESCAPEO
ESCAPEP
ESCAPEQ
ESCAPER
ESCAPES
ESCAPET
ESCAPED
ESCAPEV
ESCAPEW

0
l
2
3
4
s
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Black ink
Redink
Green ink
Yellow ink
Blue ink
Magenta ink
Cyan ink
White ink
Standard text
Alternate text
Standard Double height
Alternate Double height
Standard Flashing
Alternate Flashing
Standard Double height Flashing
Alternate Double height Flashing
Black paper
Red paper
Green paper
Yellow paper
Blue paper
Magenta paper
Cyan paper
White paper

The following Escape codes are concerned with screen synchronisation:

ESCAPEX
ESCAPEY

TEXT60Hz
TEXT60Hz

ESCAPEZ
ESCAPE {
ESCAPE:
ESCAPE}
ESCAPE
ESCAPE-

TEXTS0Hz
TEXTS0Hz
GRAPHICS 60Hz
GRAPHICS 60Hz
GRAPHICS 50Hz
GRAPHICS 50Hz

Appendix 2 - Escape Codes 233

The above codes enable the screen display to be co-ordinated with the
frequency of the a.c. current supply which drives a monitor or TV used by
the Orie for display, ensuring that the signals put out by the Orie provide
the correct frame rates. The UK mains supply frequency is 50Hz, and that
of the US and Europe is 60Hz.

Appendix 3
Error Messages

Error messages are produced by the Orie whenever a program halts, due to
either errors in the program syntax or structure, or machine limitations.
The Orie doesn't make mistakes, but there are restrictions on what it can
do. The error message is followed by the number of the program line at
which the error was found, if it occurs during the RUNning of a program.
This provides an invaluable aid to debugging programs, but it should be
noted that the error may have a cause earlier in the program. Thus a
message ?ILLEGAL QUANTITY ERROR IN 130 indicates that an expression in
line 130 could not be processed because of an incorrect parameter value. The
value may have been generated earlier in the program, and the error only
halts the program when the incorrect value is used. TRON and TROFF may be
used to trace program execution (with suitable PRINT statements to output
variable values if required) when this type of problem is encountered, in
conjunction with STOP instructions to provide breakpoints in the program
execution. The Oric's error messages and their explanations are as given
below.

?BAD SUBSCRIPT ERROR: The program tried to refer to an array element that
did not exist. With default arrays, this means outside the range 0-10, and in
the case of DIMensioned arrays, outside the dimensioned range, as, for
example, referring to A(20,3) when a DIM A(l9,3) statement was used.

?BAD UNTIL ERROR: The program encountered an UNTIL statement without
having a corresponding REPEAT statement stored as the beginning of the
loop.

?CAN'T CONTINUE ERROR: After a CTRL-C or STOP instruction has halted a
program, CONT may only be used if no changes have been made to the
program. Attempting to use CONT results in this error if any changes have
been made.

?DISP TYPE MISMATCH ERROR: Instructions valid only in a single screen mode
were used with the incorrect mode, such as DRAW or CHAR used when in
TEXT or LORES mode, or using PLOT and PRINT when in HIRES.

?DIVISION BY ZERO ERROR: An expression involved the (impossible) task of

Appendix 3 - Error Messages 235

dividing by zero. Watch out for undefined variables, which return the value
of zero.

?FORMULA TOO COMPLEX ERROR: The number of intermediate values which
the Orie needs to store when interpreting and evaluating an expression can
exceed the storage available, and this error results. Break down the
expression into smaller sections for evaluation.

?ILLEGAL DIRECT ERROR: A statement only allowed within a program line
(such as INPUT or GET) was used as a direct command.

?ILLEGAL QUANTITY ERROR: A parameter in an expression was outside the
valid range. Check the keyword definitions for valid ranges, the values
returned by computed expressions used as parameters, any use of INT, and
the rounding processes the Orie does automatically, when adjusting com
puted values to integers. The error is also generated when an integer value
greater than 32767 or less than - 32768 is assigned to an integer variable.

?NEXT WITHOUT FOR ERROR: The program encountered a NEXT statement
when no corresponding FOR ... TO statement was stored. Either the
FOR ... TO was omitted, or the flow of control in the program jumped into a
loop.

?OUT OF DATA ERROR: The program was instructed to READ non-existent
DATA items, i.e. too many READ statements and/or too few DATA items.

?OUT OF MEMORY ERROR: The Orie has memory allocated to store various
data, such as the BASIC program, variables, and screen. If the combined
requirements of these areas exceeds the available memory, this error is
produced. Note that HIMEM restricts the area available to the BASIC program
and variables if it is lowered. FRE can be used to close up the space given
over to string storage, which becomes larger than is required by the volume
of data if many string operations are performed in a program, as strings are
shuffled around. If more than 24 subroutines, or REPEAT .. UNTIL loops, or
more than 10 FOR .. NEXT loops, are nested in a program the stack space
allocated for storage of return line numbers is exceeded, and, since a
particular area of memory is full, we get the same error message.

?OVERFLOW ERROR: If the Orie generates a number too large for it to handle
in the course of a calculation then the number cannot be stored in the 5-byte
representation used by the Orie, and this error is generated. The largest
value the Orie can hold is approximately 1. 7E38 and the smallest 2.93E-39.

?REDIM'D ARRAY ERROR: Any array previously dimensioned, either as a
default array (11 elements per dimension) or with a DIM statement, cannot
be re-DIMensioned in the course of a program.

?REDO FROM START: In response to an INPUT statement requiring a numeric

236 Appendix 3 - Error Messages

data entry, non-numeric data was entered. Control returns to the INPUT

statement to allow re-entry of data.

?RETURN WITHOUT GOSUB ERROR: The program encountered a RETURN

statement without having previously processed a corresponding GOSUB

instruction.

?STRING TOO LONG ERROR: Maximum length of a string is 255 characters.

?SYNTAX ERROR: The instruction being interpreted has an incorrect format.
This may be either punctuation (incorrect or missing) or misspelt
keywords.

?TYPE MISMATCH ERROR: This error occurs when a string is assigned to a
numeric variable ·or function, and vice versa.

?UNDEF'D STATEMENT ERROR: The program attempted to transfer control,
in response to a GOTO, GOSUB or THEN statement, to a line number that did
not exist.

?UNDEF'D FUNCTION ERROR: An instruction to evaluate a user-defined
function was encountered in the program where it had not been previously
specified with a DEF FN statement.

Appendix 4
Screen grids

"' -0 ·g,
c
Q)

~
0

Cf)

I ...,.
x
'O c
Q)
a. a.
<(

co
~

Reserved column (for background colour) usually protected in both text and lores

I ! In text mode this is usually reserved for foreground colour;
~ may be used in lores mode Screen
Ill 5 10 15 20 25 30 35 39 Addresses

0 --.--,----.--- 48040-48079 (#BBA8- #BBCF)
48080-48119 (#BBD0-#BBF7)

t--++- -+-+-l-+-1--+-t-!-+-+--+-t-t-1--+-+-1 48120- 48159 (# BBF8- #BC I F)
48160-48199 (#BC20-#BC47)

1--1-+--+---+-t-!-+--+--+-1-+-1--+-+-1--+-1--+-t-t-+--+--+-t-t-+--+--+-t-+-+--+-+-t--+-+---+-t--t---1 48200 - 48239 (# BC48 - #BC6F)
5 48240- 48279 (#BC70- #BC97)

l--l-+-+-+-l--l-++-+-1-+-++-+-1-+-+-+-t-+-+--!-+-+-+-+-l-+-t-+-t--l--t-lr-t-t-T-t--t---I 48280- 48319 (# BC98- # BCBF)
>--4-+--+-+--+--+--+-+-1-+-+--+--+--+-1--+-+--+-·+-1-t-t--+-+- - 48320-48359 (#BCC0- #BCE?)
1--1--1--+--+-+--t-+--+--<-<~ +-11--+-+--+-+-1-+--+-+-t-1-+-+--+-t-t-+--+--+-t-t-+---+-t--t-+---+--i 4836Ql - 48 399 (# BCE8- #BD0F)
- +--+-+--l-l--+--+--+-1-+--+--+-t--1-+-+--+-t-t-+---+-+-t--t-+--+-+-t-+-+---+-+-1-+-+---+-t-+-+--i 48400- 484 39 (#BO 10- #BO 37)
1--1--1---1--1---1--1-+-+-+--+-+--+---1---+-1-+--+-+-1-+-1--+-+-t-t-1--+-+-1-+-+---+-+-+-+-+-+-1--+-1 48440-48479 (#BD38-#BD5F)

:fl 10 48480-48519 (#BD60-#BD87)
1- 48520- 48559 (#BD88- #BDAF)
~ 48560- 48599 (#BDB0- #BOD?) o 48600-48639 (#BDD8-#BDFF)
a: 48640-48679 (#BE00-#BE27)
q 15 48680-48719 (#BE28-#BE4F)
0 48720-48759 (#BE50-#BE77)
~ 48760-48799 (#BE78-#BE9F)

t-t-+--+-+-4--+--+-+---1--+--+--+-+-t-t-+--+--+-+- +--+-+-+--+-+--+--+-t-t-+--+--+-1-+-t---t-t-t-+-1 488(}0- 48839 (# BEA0 - #BEC7)
1--1-+--+--4-l--l--+--+-·+--+-+--+---+-+-~-+--+--+-1-+-+---+-+-t-+-+---+-+-t--+-+----t-t--t-r--+-+-t--+-1 48840 - 48879 (#BEC8- #BEEF)

20 48880-48919 (#BEF(.!-#BFl7)
t-t-+--+--+--l--'>---+ -+-+--"t-t-+-+--+--+-1--+-+--+-+--1-t-+-+--+--+-t-t-+--t--+-+-t-t-t--+--t--t--t-1 48920- 489 59 (#BF 18- #BF 3F)

48960-48999 (#BF40-#BF67) 5 -l-+-t--1- - t-+- +--+-++-+-11-+-+-+--+-f-t-+---t-+-1-+-t-+-t-+-+--+-t 49000- 49039 (# BF68 - # BF8F)

e 25 49046-49079 (#BF90- #BFB7)
~ 49080-49119 (#BFB8-#BFDF)

X CO-ORDINATES
~ LOW RESOLUTION MODE
~ (TEXT. LORES)
E-4

0 l---l---ll---l---1---1---1--11---1---+--+--+--+-+-+-+-+-+--+--t--t--t--t----r--1 Screen
M ~~

. 1--t---t--t-- ·--' ·-+-+---+--+--+-+--+--+--+---ef---1 40960 - 40999 (# A000 - # A027)
1--1---1---1---1---1---1---1----1----1----1----1--+--1---1---1---1---1---1--+--+--+--+--+-_, 4 I 000 - 41 0 39 (# A028 - # A04F)

40 41040-41079 (#A050-#A077)
l---+--+--1---11---11---1--+-+--+--+-+-l--+-l--l--l--l--l----+----+----+----+--+--I 4 I 080 - 41 I 19 (# A078 - # Ar/J9 F)

41120-41159 (#A0A0-#A0C7)
60 .__.__.---1----+-+--+-+----+- ---1--1----1---+--+--+--+--1--1---1---1----1----1---1--1-- 41 160 - 41 199 (# A0C8 - # A0EF)

1---1---1---1---1--1--1--1---1---1---1--+-+--+--+--+--+--+--+--+--+--+--+--+--1 41200- 412 39 (# A0F0- #A I 17)

801--1--1--+--+--+---t--l--t---l--+-+-+-+-+-+--+--+--+--+-~--r---r---r---1

1001---1---1--1---1--+--l--l---l---1---il---l-+-+-+--+--+--+-+--l--+--i' -1--1--.+------j
I

1201--+--+--+--+--+--+-+-+-+-+-+-+--+--+--+--+--+--+--+--+--+--+--+-_,

1401---+--+--+--+--+--+--+--+--+--+-+-+-+-+-+-+-+-+--+--+--+--+--+--1

1601--+--+--+--+--+--+-+--+--+-+-+-+-+-+-+--+--+--+--+--+--+--!--!--I

180'f-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+--+--+--+--+--+--t--t--t--I
48880-48919 (#BEF0-#BFl7)

-1--+-+-+-+-+-+--+--+--+--+--+--+--1 48920 - 489 59 (#BF 18 - # BF3F)
1991---1---1---1---.L-.L-.L-l---l---..L.-..L.-..L.-..1---'--..l.--'---'--'-'---~~~'-----"---I -

{
(TEXT LINES AS FOR LAST

TEXT THREE LINES OF TEXT MODE)
LINES 1---------------------------1

0 20 40 60 80 100 120 140 160 180 200 220 239
HIGH RESOLUTION MODE

(HIRES)

-6"
"O
CD
::J
c.
)('

""' I
en
C'l
Ci)
CD
::J

(()

5: en

Appendix 5
Memory map

The memory maps given here are for TEXTand HIRES modes. All addresses
are given in hexadecimal. The HIRES map has user Input/Output locations
marked. These are the same in TEXT mode. The 16K RAM Orie addresses
are given on the left and the 48K addresses on the right.

16k FFFF

c~

NO MEMORY}
LOCATIONS HERE

4000
3FE(1

3880

3800

3400

1800

0300

G200

0100

Appendix 5 - Memory map 241

TEXT MODE
48KFFFF

ROM

C000
SPARE

8FE0

SCREEN

8880
ALTERNATE CHAR SET

STANDARD CHAR SET

This area available for
user programs only
if GRAB used

~---------------------------~ 9800

USER PROGRAM AREA

PAGE4

PAGE 3(1/0)

PAGE 2 (RUN TIME VARIABLES)

PAGE I (STACK)

PAGE 0 (ALLOCATED)

16K
FFF F

1 C000
NO MEMORY

LOCATIONS HERE
4000 J

2000

IC00

HIRES MODE

ROM

SPARE

SCREEN

ALTERNATE CHAR SET

STANDARD CHAR SET

48K

BFE0

.-

N/J00

9C0fl

USERl/O
USERl/O
USERl/O
USERl/O

USER 1/0 AREA
USED IN CONJUNCTION

WITH 17<'5 PIN AND
1/0 CONTROL PIN

03FF
03FE
03FD
03FC
03FB l DOWNWARDS

0 180

050G

040G

0300

0200

0100

USER PROGRAM AREA

PAGE4

PAGE 3(1/0)

PAGE 2 (RUN TIME VARIABLES)

PAGE I (STACK)

PAGE 0 (ALLOCATED)

9800

05G0

0400

()300

200 (J

0 100

l
ORA(PORT A)

IER
IFR

PCR
ACR
SR

T2C-H
T2L-LIT2C-L

TIL-H
TIL-L
TIC-H

030F
030E
030D
030C
030B
030A
0309
0308
0307
0306
0

TIL-UTIC-L 0
305
304
303
302
301

DDRA(DATADIRECTION~ ~
DDRB (DATA DIRECTION B) 0

ORA (PORT A) O
ORB(PORTB) 0 300

AREAS FOR USER 1/0

ORIC INTERNAL
6522 VIA
PRINTER/KEYBOARD
/SOUND CHIP AND
/DATA TRANSFER
CONTROL

(1/0 PIN ONLY
IN THIS AREA)

)>
"O
"O
<D
:I
a. ;;:·
01
I
:ii:
<D
3
0
<
3
"' "O

I\)

t;

Appendix 6
Binary/hex/decimal

• conversions
This appendix gives, firstly, a table of the equivalent hexadecimal and
binary numbers for decimal values up to 255. A table is then provided for
hex/decimal/hex conversion. Any hex number is easily converted to deci
mal with a simple PRINT #xxxx instruction on your Orie, and decimal to hex
conversion is also provided via HEX$.

Decimal Hex Binary

0 #00 00000000
1 #01 00000001
2 #02 00000010
3 #03 01Ht00011
4 #04 00000100
5 #05 00000101
6 #06 00000110
7 #07 00000111
8 #08 00001000
9 #09 00001001
10 #0A 00001010
1 1 #IZIB 00001011
12 #0C 00001100
13 #00 00001101
14 #0E 00001110
15 #121F 00001111
16 #10 00010000
17 #11 00010001
18 #12 00010010
19 #13 00010011
20 #14 0001010121
21 #15 0121010101
22 #16 00010110
23 #17 00010111
24 #18 00011000
25 #19 00011001
26 #1A 121012111010
27 #18 1210011011

Appendix 6 - Binary/hex/decimal conversions 245

Decimal Hex Binary

28 #1C 00011100
29 #1D 00011101
30 #lE 00011110
31 #lF 00011111
32 #20 00100000
33 #21 00100001
34 #22 00100010
35 #23 00100011
36 #24 0010011210
37 #25 00100101
38 #26 00100110
39 #27 00100111
40 #28 00101000
41 #29 00101001
42 #2A 001011U0
43 #28 00101011
44 #2C 00101100
45 #2D 00101101
46 #2E 00101110
47 #2F 00101111
48 #30 00110000
49 #31 00111lJ001
50 #32 00110011lJ
51 #33 001101lJ11
52 #34 00110100
53 #35 001101llJ1
54 #36 00110110
55 #37 00110111
56 #38 00111000
57 #39 1210111001
58 #3A 001 1101 IZI
59 #38 00111011
60 #3C 00111100
61 #3D 0011111!11
62 #3E 00111110
63 #3F 00111111
64 #40 IZI 1001Z1000
65 #41 01000001
66 #42 0 1 0 IZI IZI IZI 1 IZI
67 #43 011!1210011
68 #44 01000100
69 #45 01000101

246 Appendix 6 - Binary/hex/decimal conversions

Decimal

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1 1 1

Hex

#46
#47
#48
#49
#4A
#49 .
#4C
#4D
#4E
#4F
#50
#51
#52
#53
#54
#SS
#56
#57
#58
#59
#SA
#58
#SC
#5D
#5E
#5F
#60
#61
#62
#63
#64
#65
#66.
#67
#68
#69
#6A
#68
#6C
#6D
#6E
#6F

Binary

01000110
01000111
010·01000
01001001
010010 .10
01001011
01001100
01001101
01001110
01001111
01010000
12110112101211
01010010
01010011
01010100
011211121101
0112110110
01010111
01011000
011Z1111Hl1
01011010
01011011
01011100
01011101
01011110
0101-1111
01100000
1211100001
01100010
01100011
01101Z1100
0110121101
01100110
0110121111
01101000
1211 UH001
1211101010
01101011
011(111100
0111211101
01101110
01101111

Appendix 6- Binary/hex/decimal conversions 247

Decimal Hex Binary

112 #70 01110000
113 #71 01110001
114 #72 01110010
115 #73 01110011
116 #74 01110100
11 7 #75 01110101
11B #76 01110110
119 #77 01110111
120 #7B 01111000
121 #79 01111001
122 #7A 01111010
123 #78 01111011
124 #7C 01111100
125 #7D 01111Ul1
126 #7E 01111110
127 #7F 01111111
12B #B0 11B000000
129 #B1 10000001
130 #B2 10000010
131 #B3 10000011
132 #B4 10000100
133 #85 10000101
134 #86 10000110
135 #87 10000111
136 #88 10001000
137 #89 1121012111211211
138 #BA 10001010
139 #88 1012101011
140 #BC 10121121110121
141 #SD 10001101
142 #BE 10001110
143 #BF 10001111
144 #9121 1012110000
145 #91 10010001
146 #92 1012110010
147 #93 100Ul011
148 #94 10010100
149 #95 10010101
15121 #96 10010110
151 #97 10010111
152 #98 10011000
153 #99 10011001

248 Appendix 6- Binary/hex/decimal conversions

Decimal Hex Binary

154 #9A 10011010
155 #98 10011011
156 #9C 10011100
157 #90 10011101
158 #9E 10011110
159 #9F 10011111
160 #Alli 1 0 1 0 0 0 0 0
161 #Al 1 0 1 0 0 0 0 1
162 #A2 1 0 1 0 0 0 1 0
163 #A3 10100011
164 #A4 10100100
165 #AS 1111100101
166 #A6 1010011121
167 #A7 10100111
168 #AB 1 0 1 0 1 IZI 0 0
169 #A9. 1 0 1 0 1 0 0 1
170 #AA 10101010
171 #AB 10101011
172 #AC 10 101100
173 #AD 10101101
174 #AE 10101110
175 #AF 10101111
176 #B0 1011121000
177 #:81 10110001
178 #82 10110010
179 #83 10110011
180 #B4 10110100
181 #BS 10110101
182 #86 . 10110110
183 #B7 10110111
184 #B8 10111000
185 #B9 10111001
186 #BA 10111010
187 #BB 10111011
188 #BC 10111100
189 #BD 10111101
190 #BE 10111110
191 #BF 10111111
192 #C0 11000000
193 #Cl 11000001
194 #C2 11000010
195 #C3 1100001 1

Appendix 6- Binary/hex/decimal conversions 249

Decimal Hex Binary
196 #C4 1100111 !IHI
197 #CS 1111100101
19B #Co 11000110
199 #C7 11000 1 l 1
200 #CB 11001000
201 #C9 11001001
202 #CA 11001010
21Z13 #CB 11001011
21Z14 #CC 11001100
205 #CD 11001101
206 #CE 11001110
21Z17 #CF 11001111
20B #00 11010000
209 #01 11010001
210 #02 l 11Z110010
211 #03 1101012111
212 #04 11010100
213 #05 11010101
214 #06 11010110
215 #07 11010111
216 #DB l lflll 1000
217 #09 11011001
218 #DA 11011010
219 #DB 11011011
220 #DC 1101110121
221 #DD 11011101
222 #DE 11011110
223 #OF 11011111
224 #E0 l l 11Ht1Ht0
225 #El 11100001
226 #E2 11100010
227 #E3 11100011
228 #E4 1111210100
229 #E5 11100101
230 #Eo 11100110
231 #E7 11100111
232 #EB 111IZJ1000
233 #E9 1 11IZJ1 001
234 #EA 11101010
235 #EB 11101011
236 #EC 11101100
237 #ED 11101101

250 Appendix 6 - Binary/hex/decimal conversions

Decimal

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Hex

#EE
#EF
#F0
#Fl
#F2
#F3
#F4
#F5
#F6
#F7
#FB
#F9
#FA
#FB
#FC
#FD
#FE
#FF

Decimal/Hex/Decimal Conversion Table

3 2
HEX DEC HEX DEC HEX
0 0 ti 0 0
I 4096 I 256 I
2 8192 2 512 2
3 12288 3 768 3
4 16384 4 1024 4
5 20480 5 1280 5
6 24576 6 1536 6
7 28672 7 1792 7
8 32768 8 2048 8
9 36864 9 2304 9
A 40°960 A 2560 A
B 45056 B 2816 B
c 49152 c 3076 c
D 53248 D 3328 D - ---·· ----
E 56344 E 3584 E
F 61440 F 3840 F

Binary
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
111 1111Zl0
11111101
11111110
1 1 1 1 1 1 1 1

I
DEC HEX

0 0
16 I
32 2
48 3
64 4
80 5
96 6

112 7
128 8
144 9
160 A
176 B
192 c
208 D
224 E
240 F

0
DEC

ti
I
2
3
4
5
6
7
8
9

10
11
12
13
14
IS

To use this table for decimal to hexadecimal conversion, take the decimal
number, for example 49120. Find the largest number in the table that is less

Appendix 6- Binary/hex/decimal conversions 251

than the number to be converted. For our example, this is 45056, in column
3 of the table. The hex digit corresponding is B, which gives us our first
hexadecimal digit. Next take the value of this away from the original
number. 49120--45056 is 4064. The nearest smaller number (3840) is found
in column 2. This gives us Fas our next hex digit. (If the next smallest
number is in column 1, we give a zero value as our next hex digit.)

Repeating the procedure, 4064-3840 gives a remainder of 224, which is
hex E in column I. There is no remainder, so our last digit is 0. Decimal
49120=hexBFE0.

Hex to decimal conversion is simple. Merely add the decimal values
corresponding to the hex digits. #BFE0, for example, gives us
45056+ 3840+ 224+0=49120.

Appendix 7
Orie MCP-40 printer
use
In this appendix we will look at the operation of the Orie printer/plotter.
This sophisticated device allows us to produce high-quality graphical
output which is comparable with printouts produced by devices costing
over a thousand pounds.

The printer owes much of its versatility to the remarkably advanced
4-colour penholder which can be positioned to an accuracy of less than
l/lOOth of an inch. We will examine in detail the operation of the printer as a
pen plotter for drawing pictures, but first we will consider the action as a
colour printer.

We can send characters to the printer using the LPRINT and LLIST com
mands which are almost identical in effect to the PRINT and LIST commands.
There are, however, some control codes which we can send to the printer to
access its plotter functions and colours. The four control codes we can use
are summarised in the table below:

Character

8
10
11
29

Effect

Backspace
LineFeed
Reverse Line Feed
Rotate Pen holder

Note that use of character 29 only allows the programmer to rotate the pen
holder one position, and not to choose a specific colour. This means that
you'll have to keep careful track of the current colour if you use this
method.

There are two other control codes which we can use to control the
printer: CHR$(18) tells the printer to enter the plotter graphics mode and
CHR$(17) tells the printer to return to text mode.

From now on we will consider the use of the printer as a graphic plotter.
In this mode it has a much wider range of control characters. Once we have
entered the plotter mode any of the alphabetic characters in the list below
will be taken as the start of a command sequence. The parameters are
simply LPRINTed to the printer following the appropriate command charac
ter and may be either string literals or the results of evaluating variables or
calculations. Some of the commands are accompanied by example pro-

Appendix 7 - Orie MCP-40 printer use 253

grams which use these commands to produce sample diagrams.

Character Parameters Effect

A
c

D

H
I
J
L

Exit plotter mode.
n Change pens to number n(0-3). (colours are

usually arranged Black, Blue, Green and
Red.)

x,y Draw from current position to (x,y). More
than one set of coordinates may be included.
Move pen to plotter origin.
Reset origin to current position.

x,y Draw relative to current position.
n Choose type of line which is drawn (see dia

gram). Parameter n may be in the range 0-15.

10 LPRINT CHR$Cl8J
20 FOR I=0 TO 15
30 LPRINT II I,,

40 LPRINT "L" ; I
50 LPRINT''P " ; "LINE
60 LPRINT "0400,0"
?0 LPRINT "M0, -20"

80 NEXT I
90 LPRINT CHR$Cl7J
100 END

TYPE: 0
TYPE: 1
TYPE: 2
TYPE: 3
TYPE: 4
TYPE: 5
TYPE : 6
TYPE: 7
TYPE: 8

TYPE :" ; I

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

TYPE: 9 ____________ _

TYPE : 10
TYPE: 11
TYPE: 12

254 AppenJix7 - Orie MCP-40 printer use

LINE TYPE:
LINE TYPE:
LINE TYPE:

M x,y
p a$

Q n

13
14
15

Move pen .to (x,y).
Print the characters in a$ up to the next car
riage return.
Set print orientation. The value of n (0-3)
chooses normal, down, backwards (upside
down) or up, as in the diagram beiow.

10 LPRINT CHR$Cl8)
20 LPRINT "M24121,0"
30 FOR N=0 TO 3
4.0 LPRINT "Q" ;N
5121 L.PRINT "PBRIAN WAS HERE"
6121 NEXT
7121 LPRINT CHR$Cl7)
80 END

BRIAN
w
~
w
I

(f)
<r:
3

z
<r: ._,
~

00 3~3H
R
s

WAS

S~M

x,y
n

HERE en
7J

:D
z
E:
:D
(/)

I
IT1
7J
IT1

N~I~8

Move pen relative to the current position.
Size of characters for printing. n can be 0 to
63. 0 gives 80 characters per line, 63 gives I
character per line.

Appendix 7 - Orie MCP-40 printer use 255

10 LPR I NT CHR$ C 18 J ; ., I"
20 FOR N=0 TO 4
30 Ll-'RHIT "S" ;N
40 LPRINT "PHELLO "
50 NEXT
60 LPRINT"M0,-500"
?0 LPRINT"S63"
80 LPRINT"PA"
90 LPRINT"Sl"
100 LPRINTCHR$Cl7J
110 END

·rnoHELLoHELLOHELLOH ELL 0

x a,d,n Axis drawing command. The parameters are:
a axis direction, (0 for y,l for x)
d distance between tick marks
n number of marks along axis
See the example below for the effects of these
parameters.

256 Appendix 7 - Orie MCP-40 printer use

10 LP~INT CHR$Cl8);" I"
20 LPRINT "M200, -200''
30 LP~INT "X0, 100, 4''
40 LPRINT "M0, 0''
50 L,PRINT "Xl, 100, 4"
60 LPRlNT "M0,0"
70 FOR X=0 TO 400
80 A=CX-200)*Pl/l00
90 Y=SINCA)*100
100 L,PRINT "D'' ;X; " ,"; Y

110 ·NEXT
120 L,PRINT CHR$Cl7J
130 END

We will now have a look at a simple utility program for drawing diagrams of
user-defined characters. This will provide an example of the potential for
serious use that is inherent in the Orie MCP-40's high-resolution graphical
abilities. You may have noticed that some diagrams in this book were drawn
on the Orie printer, although its limited width prevents it producing large
display graphics.

Appendix 7 - Orie MCP-40 printer use 257

10 LPRJNT CHR$Cl8J
20 LPRJNT "M0,-480"
30 LPRJNT "1"
40 FOR l =0 TO 8
50 LPRlNT "M90," ;!*30+30
60 LPRINT "0270,";I*30+30:IF 1>6 THEN90
70 LPRlNT "M"; I*30+90;., 30"
80 LPRlNT "D"; [)j:30+9~; ., , 270"
'30 NEXT
100 LPRJNT "Q3"
110 FOR 1=5 TO 0 STEP-I
120 X=270-1*30-~:Y=275
130 LPRlNT "M" ;X", "Y
140 LPRlNT "P" ;2"1
1.50 NEXT =LPRJNT"Q0"
160 FOR 1"-'1 TO 8
170 READ p:Q=P
180 FOR J=S TO 0 STEP ·-1
190PP=1NTC2"J+.1J
200 IF P>=PP THEN P=P-PP:GOSLJB 400
210 NEXT J
220 X=290:Y=270-1*30+5
230 LPRINT "M" ;'><;"," ;Y
240 LPRJNT "P";
250 IF Q<100 THEN LPRINT \l 11.

260 lF Q <10 THEN LPRHH " ";
270 LPRJNT " ";Q
280 NEXT
290 LPRlNT CHR$C17)
300 END
400 X=30*C8-JJ:Y=270-30*1
410 FOR A=0 TO 30 STEP 5
420 LPRlNT "M" ;'><;"," ;Y+A

'

430 LPRlNT "D" ;X+30-A; ., , "; Y+30
440 NEXT
450 FOR A=5 TO 30 STEP 5
460 LPRlNT "M";X+A;",";Y
470 LPRlNT "D";'><+30;",";Y+30-A

258 Appendix 7 - Orie MCP-40 printer use

480 NEXT
490 RETURN
500 DATA 17,45,43,36,6 , 14,12,12

Here is a sample output from this program, showing how it translates the
decimal data defining the character into binary, and thence into graphical
form.

17

45

43

36

6

14

12

12

We hope that this brief introduction to the wonders of the Oric's printer will
have inspired you with as much enthusiasm as we have for this versatile and
remarkable little machine. Just a few last words to say that the MCP-40's
manual is clearly written and that, with the aid of these few examples, you
should have little difficulty in using it effectively with your Orie. The
printer has a standard Centronics interface and can also be connected to
other computers if desired. Now we will leave it to the printer to have the
final word in this section.

10 LPRINT CHR$C 18); ., I"
20 LPRINT "M240,-240"
30 LPRINT "I"
40 LPR I NT "M0, 0"

50 A=10 :8=30
60 REPEAT
70 GOSU8 200
80 8=A;A=A+20
90 GOSU8 200
100 8=8+40
110 UNTIL 8=210
120 8=200:GOSU8 200
130 LPRINT "M100,-250"
140 LPRINT "P8YE2"
150 LPRINT CHR$Cl7J
160 END
200 L,PRINT"M";A;··,0"

Appendix 7 - Orie MCP-40 printer use 259

210 FOR M=0 TO 2tPI STEP PI/100
220 X=AtCOSCM) :1=8tSINCM)
230 LPRINT"O";'><;",··;r
240 NEXT
250 LPRINT' O" ,A,", 0"
260 RETURN

260 Appendix 7 - Orie MCP-40 printer use

BIE2

Appendix 8
6502 OP codes

The tables presented in this appendix give the 6502 Op Codes, with the hex
codes for each mnemonic categorised by address mode.

The notation is as follows:

RI Register Changed
R2 Sending Register
A Accumulator
X RegisterX
Y RegisterY
S Stack Register
PC Program Counter
P Processor Register (Status Flags)
M Memory Location

The P Register flags are:

Bit0 c Carry
I z Zero
2 I Interrupt
3 D Decimal
4 B Break
s * (not used)
6 v overflow
7 N Negative

262 Appendix 8 - 6502 OP codes

ZERO Z-PAGE
,\INEMONIC DESCRIPTION RI R2 IMPLIED IMMED PAGE x
ADC ADD WITH CARRY A 69 6S 7S

AND LOGICAL AND A 29 2S 3S

ASL ARITHMETIC SHIFT LEFT AIM 0A(A) 06 16

BCC BRANCH ON CARRY CLEAR

BCS BRANCH ON CARRY SET

BEQ BRANCH IF EQUAL TO ZERO

BIT COMPARE BITS WITH 24
ACCUMULATOR

BMI BRANCH ON MINUS

BNE BRANCH ON NOT EQUAL TO ZERO

BPL BRANCH ON PLUS

BRK BREAK s 00

BVC BRANCH ON OVERFLOW CLEAR

BVS BRANCH ON OVERFLOW SET

CLC CLEAR CARRY lS

CLD CLEAR DECIMAL DS

CLI CLEAR INTERRUPT MASK SS

CLV CLEAR OVERFLOW FLAG BS

CMP COMPARE TO ACCUMULATOR C9 cs DS

CPX COMPARE TO REG-X E0 E4

CPY COMPARE TO REG-Y C0 C4

DEC DECREMENT MEMORY C6 D6

DEX DECREMENT REG-X x CA

DEY DECREMENT REG-Y y SS

EOR EXCLUSIVE OR ACCUMULATOR A 49 45 SS

INC INCREMENT MEMORY E6 F6
INX INCREMENT REG-X x ES

INY INCREMENT REG-Y y cs
JMP JUMP TO ADDRESS PC

Appendix 8 - 6502 OP codes 263

Z-PAGE IX DIRECT IKDIRECT REUTil'E 1\BSOLllE ABSOLm ABSOLllE P-R~STER
y x y ADDRESS ADDRESS x y IX DIRECT ~ \" * B D I z c

61 71 6D 7D 79 x x xx
21 31 2D 3D 39 x x

0E IE x x x
90

B0

F0
2C M7 M6 x

30
' D0

10
x

50
70

0

0

0

0

Cl DI CD DD D9 x xx
EC x x x

cc x xx

CE DE x x
x x
x x

41 51 4D SD 59 x x

EE FE x x
x x

x x
4C 6C

264 Appendix 8 - 6502 OP codes

ZERO Z-PAGE
,\L'lE.llON!C DESCRIPTION RI R2 IMPLIED l~L\IED PAGE x
JSR JUMP TO SUBROUTINE PC/S

LOA LOAD ACCUMULATOR A A9 AS BS

LOX LOADREG-X x A2 A6

LOY LOADREG-Y y A0 A4 B4

LSR LOGICAL SHIFT RIGHT AIM 4A(A) 46 S6

NOP NO OPERATION EA

ORA INCLUSIVE OR ACCUMULATOR A 09 0S IS

PHA PUSH A ONTO STACK s A 4S

PHP PUSH P-REGISTER ONTO s p 0S
STACK

PLA PULL ACCUMULATOR FROM A 6S
STACK

PLP PULL P-REGISTER FROM p 2S
STACK

ROL ROTATE LEFT ONE BIT AIM 2A(A) 26 36

ROR ROTATE RIGHT ONE BIT AIM 6A(A) 66 76

RTI RETURN FROM INTERRUPT Pl 40
PC/S

RTS RETURN FROM SUBROUTINE PC/S 60

SBC SUBTRACT WITH CARRY A E9 E5 FS

SEC SET CARRY p 3S

SEO SET DECIMAL p FS

SEI SET INTERRUPT MASK p 7S
(DISABLE)

STA STORE ACCUMULATOR M A SS 9S

STX STOREREG-X M x S6
STY STOREREG-Y M y S4 94
TAX TRANSFER A TO X x A AA

TAY TRANSFER A TOY y A AS

TSX TRANSFERS TO X x s BA

TXA TRANSFER XTO A A x SA

TXS TRANSFER XTO S s x 9A

TYA TRANSFER Y TO A A y 98

Appendix 8 - 6502 OP codes 265

Z-PAGE Ll>IDIRECT INDIRECT RELATIVE ABSOLl'TE ABSOLl'TE ABSOLL'TE P-REGISTER
\' x \' ADDRESS ADDRESS x \' INDIRECT ti \' * B D I z c

20
Al Bl AD BD B9 x x

B6 AE BE x x
AC BC x x
4E SE 0 xx

01 II 0D ID 19 x x

x x

xx xx xx xx

2E 3E x xx

6E 7E x xx
x x xx xx xx

El Fl ED FD F9 xx xx

I

I

I

81 91 SD 9D 99

% 8E
SC

x x
x x
x x
x x

x x

Appendix 9
ROM Routines and
Addresses
These are routines within the Orie ROM which can be CALLed from BASIC to
produce the effects described. They can also be used directly from useR
routines in machine code (see Chapter 10).

For most of these routines it will be sufficient to load the appropriate 6502
registers before JSRing to the routine in question. However, for the graphics
and sound routines, parameters must be passed by storing them in the area
of memory starting at #2E0. Parameters are represented as 16 bit 2's
complement numbers. The parameter area address will be referred to as
PARAMS. On return, PARAMS + 0 is set to 1 if an error occurred. CALLing
routines should set PARAMS + 0 to 0 before CALLing. All addresses are given
in hexadecimal. All routines corrupt registers A, X and Y unless otherwise
specified.

VDU address: F77C

Prints the character on the screen and moves cursor to the right.

·Call parameters: X =character to print
Return parameters: none
Registers corrupted: none

See Appendix 3 for Control Codes

STOUT address: F865

Prints a message on the status liije on the screen (locations 48000 to 48039).

Call parameters: A= message address (low)
Y =message address (high)
X =horizontal position to start

Return parameters: X =next position

Message is terminated with a zero.

Appendix 9 ROM Routines and Addresses 267

GTORKB address: EB78

Characters are returned at the current repeat rate which is determined by
locations 24E and 24F (hex). Location 24E is the delay before a key starts
repeating in units of 30ms. Location 24F is the time between successive
characters when the keyboard is repeating in units of 30ms. To obtain
characters at maximum rate set locations 24E and 24F to one.

PRTCHR

Call parameters: none
Return parameters: A= ASCII character

signflag + ve no character
signflag - ve valid character

Registers corrupted: none

address: FSCI

Prints a character to the printer.

OUTLED

Call parameters: A= ASCII character
Registers corrupted: A

address: E75A

Outputs leader (9 characters of ASCII Code 16, SYN) to tape at current
speed.

Call parameters: none
Return parameters: none

Note: For all cassette routines the current speed is governed by location
240. 0 is fast, greater than 0 is slow.

GETSYN

Reads bytes from tape until in sync with tape.

Call parameters: none
Return parameters: none
Registers corrupted: A,X

address: E735

268 Appendix 9 ROM Routines and Addresses

OUTBYT address: E65E

Outputs a byte to the tape at current speed.

Call parameters: A= output character
Return parameter: none
Register corrupted:, A

RD BYTE address: E6C9

Reads a byte from the cassette at current speed.

Call parameters: none
Return parameters: A= input character
Registers corrupted: A

CURS ET

Call parameters: PARAMS + 1: x value
PARAMS + 3: y value
PARAMS + s: fb value

address: F0C8

Return parameters: PARAMS set to 1 if out of range error

CURMOV

Call parameters: PARAMS + 1: x value
PARAMS + 3: y value
PARAMS + s: fb value

address: F0FD

Return parameters: PARAMS set to 1 if out of range error

DRAW

Call parameters: PARAMS + 1: x value
PARAMS + 3: y value
PARAMS + s: fb value

address: F110

Return parameters: PARAMS set to 1 if out of range error
Registers corrupted: A,X

CHAR address: Fl2D

Call parameters: PARAMS + 1: ASCII character (in LSB)

PARAMS + 3: character set (0 standard, 1 alternate)
PARAMS + s: fb value

Return parameters: PARAMS set to 1 if out of range error

Appendix 9 ROM Routines and Addresses 269

CIRCLE

Call parameters: PARAMS + 1: radius
PARAMS + 3: fb value

address: F37F

Return parameters: PARAMS set to 1 if out of range error

PATRN (PATTERN) address: FUD

Call parameters: PARAMS + 1: pattern value
Return parameters: PARAMS set to 1 if out of range error
Register corrupted: X

POINT address: FlC8

Call parameters: PARAMS + 1: x value
PARAMS + 3: y value

Return parameters: PARAMS set to 1 if out of range error
PARAMS + 1: 0=background

FILL

Call parameters:

1 =foreground

PARAMS + 1: no. of rows
PARAMS + 3: no. of cells
PARAMS + s: value

address: F268

Return parameters: PARAMS set to 1 if out of range error

PAPER address: F204

Call parameters: PARAMS + 1: colour
Return parameters: PARAMS set to 1 if out of range error

INK address: F210

Call parameters: PARAMS + 1: colour
Return parameters: PARAMS set to 1 if out of range error

PING address: FA9F

Accessed by address.
NB: All sound routines use the. same parameter passing routines as the
graphic routines.

270 Appendix 9 ROM Routines and Addresses

SHOOT

EXPLD

ZAP

KBBEEP

CONTBP

Accessed by address.

Accessed by address.

Accessed by address.

Produces keyboard click.
Accessed by address.

Gives CTRL key click.
Accessed by address.

address: F ABS

address: FACB

address: F AEl

address: FB14

address: FB2A

SOUND address: FB40

Call parameters: PARAMS + l: channel
PARAMS + 3: period
PARAMS + s: volume

Return parameters: PARAMS set to 1 if out of range error

MUSIC .address: FC18

Call parameters: PARAMS +I: channel(l-3)
PARAMS + 3: octave (0-7)
PARAMS + s: note (1-12)
PARAMS + 7: volume (0-15) .

Return paramaters: PARAMS set to 1 if out ofrange error
- -

PLAY address: FBD0

Call parameters: PARAMS +_ 1: tone channel
PARAMS:+ 3: noise channel
PARAMS + s: envelope mode
PARAMS +' 7: envelope period

Return parameters: PARAMS set to 1 if out of range error

i .• ·

Appendix 9 ROM Routines and Addresses 271

W8912 address: F590

Writes the data in X to the 8912 register specified in A. The routine ensures
that the keyboard port is kept enabled. Register OE should not be
addressed, as this is the external port used by the keyboard.

Call parameters: A=8912 register no.
X=output data

Return parameters: none

Orie RAM locations page zero/page two

PAGE0
LINWID

TXTTAB
VARTAB
ARYTAB
STREND
MEMSIZ
CHRGET
CHRGOT
TXTPTR

SKPSPC
QNUM
CHRRTS

PAGE2
KEY AD
KBSTAT
CAPLCK
PAT

CURX
CURY
GRA
·SXTNK
XVDU
XGETKY
XPRTCH

XSTOUT

#0031

#009A-#009B
#009C-#009D
#009E-#009F
#00A0-#00Al
#00A6-#00A 7
#00E2-#00E7
#00E8
#00E9-#00EA

#00EB-#00EE
#00EF-#00F8
#00F9

#0208
#0209
#020C
#0213

#0219
#021A
#021F
#0220
#238
#23B
#23E

#241

Line width for terminal. (Vl.0 printer
width)
Start of BASIC text
Start of variables
Start of arrays
End of variables, lo-men
Top of FRE memory' HIMEM
Code to increment TXTPTR
LDA instruction
Pointer to current character being
interpreted
If space then CHRGET
Set carry if 0-9 and zero flag if CHR$(0)
Return instruction

Key address if key press
#A4=left shift, #A7=right
#80=CAPS
PAITERN register for
CIRCLE/ORA W

Graphics cursor X and
Y coordinates
1 =HIRES,0=TEXT/LORES
1=16K memory, else 48K
jump to VDU routine (VDU)
jump to key routine (GTORKB)
jump to printer output routine
(PRTCHR)
jump to status line output routine
(STOUT)

272 Appendix 9 ROM Routines and Addresses

INTFS
NMIJP
INTSL

TSPEED
KBDLY
KBRPT
PWIDTH
VWIDTH
CURR OW
MODE0

BGND
FGND
CUR ON
CUR INV
TIMER I
TIMER2
TIMER3

VDUL2
VDULI
VDU CH

NOROWS
I CHAR
PARAMS

#244
#247
#24A

#240
#24E
#24F
#256
#257
#268
#26A

,#Q26B
#026C
#0270
#0271
#0272-#0273
#0274-#0275
#0276-#0277

#0278-#0279
#027 A-#027B
#027C-#027D

#027E
#02DF
#02E0

jump to interrupt handler
jump to NMI routine
return from interrupt handler
(normally RTI but may be patched to a
jump)
0-fast, <>0slow
delay for keyboard auto repeat
repeat rate for keyboard repeat
printer width (normally set to 80)
screen width (normally set to 40)
cursor row position
bits in this byte define the current state
of various functions
BIT FUNCTION
7 Spare
6 Spare
5 1 =Protect columns 0 and l on

screen
4 1 =Last character printed was

ESC

·. 3 1 =Key click off
2 Spare
1 l=VDUon
0 1 =Cursor on
Background (PAPER) colour + 16
Foreground (INK) colour
Cursor on/off flag
Cursor invert flag
Keyboard

. Cursor
Spare/WAIT Sixteen-bit timer
decrementing every lllOOth
.ofsecond. Continues past 0
Addr. of second line on screen
Addr. of first line on screen
No. of char's to scroll normally

. 26 lines*40
No. ofrows on screen
Current key pressed
Parameter block transfer buffer for
graphics and sound

Appendix 10
lnpuVOutput Circuitry

The electronics enthusiast wishing to interface his Orie to control or
monitor external events might be new to computing, and it is hoped that the
notes given here will enable him or her to experiment in applying some
custom made silicon chips in example circuits, and explain how to uniquely
specify memory locations for external Input/Output purposes.

Addressing and decoding memory locations

Figure 10. l shows a 6502 CPU, the Central Processor Unit which is the
'brains' of the Orie microcomputer. It has 8 data lines (D0 to D7) and 16
address lines, A0 to AIS. Referring to figure 10.2, we can see that there are
65536 ways of arranging the 16 address lines in either a low state (0) or high
state (I). These states are actually voltage levels, 0V for low and +SV for
high. Hence, the 6502 CPU has the capability of talking to 65536 memory
locations, i.e. a 64K memory microcomputer.

These address lines are configured to either ROM chips, RAM chips or other
memory mapped devices (see the memory map, Appendix S). The eight
data-lines are used to pass 8-bit instructions or raw data between the CPU and
the ROM/RAM memory and peripherals. Referring to figure 10.3, we can see
that there are 255 ways of arranging the 8-bit data lines. How, then, can we
use these address lines to decode memory locations? Chapter 11 tells us that
we could use either the 'spare' area of memory or Page 3 memory for
suitable locations. The spare area is between #BFE0 and #BFFF.

Looking at the conversion table given in Appendix 6, we can convert
straight from hexadecimal to decimal. From left to right:

B F F F
45056 + 3840 + 240 + IS= location 49151

We could of course use the Orie for these conversions, with a simple PRINT

#BFFF, or whatever, but we're concerned here with the values of each 4-bit
sequence (called a nybble) coded by each hex symbol.

27 4 Appendix 1 O - Input/Output Circuitry

Similarly, referring to the memory map again, we see that Page 3 of the
memory occupies locations #0300 to #03FF (768 to 1023 decimal). How
can these decimal and hexadecimal numbers be used to provide us with
information about the state of the address"lines A0 to AlS? Take location
#BFFF as an example. If we refer to figure 10.4, which gives the bit
patterns for each hex nybble, we can see that hex B= 1011 binary, and
F= 1111 binary, so that the bit pattern, or pattern of states (0 or 1) on the
address lines will be:

hex # B

bit pattern 0 1 1

address line AlS . . .

Every time the instruction:

POKE #BFFF,xxx

or:

POKE 49120,xxx

F F

1 1 1 1 1 1 1 1

F

1 1 1 1

A0

is used, the state of the address lines will be as shown, giving all address
lines set high (1) except Al4, which is low (0).

Similarly, for an example Page 3 location POKE #03FF ,xxx will give the
following bit pattern:

hex # 0 3 F F

bit pattern 0 000 0011 1 1 1 1 1 1 1

address line AlS . . . A0

Lines 10, 11, 12, 13, 14, 15 are all low in this case.
The different state of these lines for each address means that each

memory location can be uniquely decoded and used to provide an enable
(low) signal to activate an input chip, whenever a certain memory location is
specified by the POKE statement.

Decoders and decoding

There are many ways of providing an enable (low) signal, and we shall
describe and illustrate examples to illustrate general principles. Basically,
most input and output chips are enabled (rendered active) by a low (0)
signal, and what is necessary is that this low signal, applied to an output or
input chip, should occur only when the correct address is on the address
lines.

Appendix 10 - Input/Output Circuitry 275

This CE chip-enable signal can be used to activate a chip such as the
74LS374 6-bit output latch shown in figure 10.6. The CE signal can activate
the same chip (or others such as the 74LS244 and 74LS245) during an
input, except that this time input data is latched on to the data-bus of the
Orie only if the internal 6522 in the Orie has been disabled by pulling I/O

CONTROL low at the same time, so that clashes with external and internal
data do not occur. The 110 CONTROL chip is activated when in Page 3 as
explained in Chapter I I.

Figure I 0. 5 shows a possible decoding method for the top of Page 3 using
a 74LS30 type 8 line decoder. iO is pulled low whenever page three is
accessed so we can use this to save ourselves the bother of decoding the top
eight bits of the address.

All connections are made via the Oric's 34-way expansion-bus using an
IDC female connector, obtainable from RS components, for example. All
the chips necessary for construction can also be obtained from RS or other
similar suppliers.

Figure I0.6 shows a circuit using the 6522 VIA, which provides a very
flexible way of obtaining input/output to external devices (which is why the
Orie itself uses one!). See Chapter I I . The VIA has I6 registers, and these
can be mapped on to the Orie memory by using, for example, A0, Al, AZ
and A3, since there are 16 ways of arranging these lines in either a I or 0
state. The significant registers are ORB, ORA, DDRA and DDRB. The VIA is
programmed for input by inputting a control word to DDRA for port A and,
DDRB for port B. If we memory-map DDRA on to #03E3 as shown, then
POKE#03E3,2SS will make port A an output. POKE#03EI,XX will then output
data to port A. Similarly, POKE#03E3,0 will make port A an input, and PRINT

PEEK(#03EI) will read the input data.
Decoding is easier, smce only I2 address lines need to be decoded and

4 x 17154, 4-16 line decoders will produce 4 unique output lines which,
when gated, will produce a chip-enable signal (CE) for the VIA as well as the
necessary disable signals (depending on which area of memory is being
used).

When using the printer interface for input/output, no lines need to be
pulled low, so I/O CONTROL, MAP and ROMDIS are left alone. A 74LS235
transceiver chip is suitable since it can be used for both input and output
along the same data lines, but power is still only obtainable from the 34-way
connector unless an external supply is used.

276 Appendix 10- Input/Output Circuitry

Fig. I 0. I: The 6502 Micro-Processor

Vss
RIY

(,11(0~
IRQ
NC

NMI
SYNC

RESET
02(0UT)
so
00 (IN)
NC
NC
R/W

+5V
Ar/J
Al
A2
A3
A4
AS
A6
A7
AS
A9

6502 Micro- g~1
Processor D2

D3 DATA

D4) -BUS
D5
D6
D7

Al0
All

~:~1 . ~~.~~11
----- ADDRESS BUS~
*these control lines are available at the expansion bus, and can be
utilized for user designed peripherals. ·

D0-D7 : DATA-BUS
A0-Al5: ADDRESS-BUS

*R/w : READ/WRITE
*IRQ : INTERRUPT REQUEST, ACTIVE IF

THE "I" REGISTER IS AT "O" & IRQ IS PULLED LOW.
*RESET : INITIALIZES THE 6502 FROM A

POWER DOWN CONDITION.

BIT LEVEL POWER

A- I 2-

A, I 2'

Ai I 22

Al I 23

A. I 2·

As I 2'

A. I 2·

A, I 2'

A. I 2·

A. I 2·

A,, I 2'-

A11 I 2"

A12 I 212

An I 2'3

A,. I 214

AIS I 2"

Appendix 10- lnpuVOutput Circuitry 277

DECIMAL

I

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

ADDRESS LINES
SPECIFYING MEMORY

TOTAL=65,535+ I =65,536 MEMORY LOCATIONS

l
ALL LINES AT 0; MEMORY
LOCATION 0000

278 Appendix 10- Input/Output Circuitry

DATA-LINES

D, D, D, D. D, D,

I I I I I I

2' 2' 2' 2· 2' 2'

255= 128 64 32 16 8 4

DECIMAL BINARY

0 0000
' I 0001 I

2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1~10

11 1011
. 12 110(,J

13 1101
14 1110
15 1111

D, o-
I I

2' 2'

2 I

-,,-

BIT

BINARY LEVEL

POWEROF2

DECIMAL

HEX

0
I

2
3
4

5

6

7

8

9

A

B

c
D

E

F

A0~--...~~~~~~

Al~---~~~~~~

A2~--~~~~~~

A3~--...~~~~~~

A4~--~~~~~~

AS~--~~~~~~

LS30

A6 __.-

A7 ~--~~~~~~

* 0
3 F F

:;;- t -----. ----,.
0011 1111 1111

r CAIS--Al2) CAll--AS) (A7--A4\ CA3- -A0)

10

l/2ofLS27 112ofLS27

CE
(CHIP- ENABLE SIGNAL)

Fig. 10.: S
ABSOLUTE DECODING OF
LOCATION 03FF (TOP OF PAGE 3)

)>
"C
"C
<D
:>
c. x·
~

0
I
:;
"C
c:

8
.ff
s.
(") a·
E
~

I\)

<Ll

FROM DECODING CIRCUIT

CE
CE

l
I 10 II

00
3

DI
D2

4

D3
7

D4
8

TO DATA BUS 13 LS374
D0-D7 OR ORIC DS

D6
14

D7
17
18

+Tc
20

2 Q0
5
6
9

12
IS
16
19

Q7

N.B. FOR INPUT
*1/0 CONTROL ONLY
TAKEN LOW IN PAGE 3

*1/0 CONTROL. MAP,
ROMDIS, ALL TAKEN LOW
BETWEEN #BFE0- #BFFF

OUTPUT

(PAGE30NL)')

ii5
CONTROL

t

)>
"'O
"'O

~ a. x·
0
I

S"
"'O
c:

8
c: .g
s.
0
~-

~

FROM
DECO DI
CIRCUIT

..,1 1

19 I
D7
D6

18 2

DS
16 4

D4
14 6

D3
12 8

TOD0-D7DATA D2
9 LS 244 II INPUT

~US LINES OR DI
7 13

:>RIC 00
s IS

3 17

10

INPUT AND OUTPUT EXAMPLES OF CIRCUITS FOR ORIC-1

--_________ L_J

-6'
-0
CD
:::> a.
;('

0
I
:r
-0
c:

8 s
-0 s
() a·
5 .
~

I\)

~

•

AIS
Al4

II
II
II
II
II
II
II
II
II
II
II
II
II

A4

DECODING
CIRCUIT

A3
A2
Al
Ari -·

Rfiii
RS'f
~

fl2

RS3
RS2
RSI
RS0

(PAGE 3 ONLY)

VO CONTROL

CE

+Vee

o .. 25
20 CSI CS2

35
36
37
38

22 6522
VIA

MAP ROMDIS

_JJ MEMORY AREAS
OTHER THAN PAGE 3.

A0
Al
A2
A3
A4
AS~ PORTA
A6
A7
CAI
CA2 34

21
INPUT-OUTPUT

A0, A I, A2, A3 ARE USED TO
MEMORY MAP ON ORIC MEMORY
SPACE THE 16 CONTROLLING
REGISTERS IN VIA-CHIP.

25
CHIP

oe
DI
02
03
04
05
06
07

33 B0

32
Bl

31
B2

30
B3
B4

29 BS
28 B6
27
26

B7
CBI
CB2

I I

POSSIBLE DECODERS
4x 74154,4-16DECODER
5 x 74LS 138, 3-8 DECODER

USING CUSTOM MADE CHIP FOR
EXTERNAL 1/0. THE
6522 VERSATILE- INTERFACE
ADAPTOR (VIA).

_..

PORTB

FOR EXAMPLE IN PAGE 3: ON
ORIC MEMORY MAP ie. 03E0 TO 03Ef

AIS A3-A0
0000 0011 1110 xxxx
(0) (3) (E)

03EF
CBEF
03ED
03EC
03EB
03EA
03E9
03E8
03E7
03E6
03ES
03E4
03E3
G3E2
03EI
03EO

ORA(PORTA)
IER
IFR
PCR
ACR

SR
T3C-H

T2L-L/T2C-L
TIL-H
TIL-L
TIC-H

TK-L/TIC-L
DORA
DDRB

ORA(PORTA)
ORB(PORTB)

CONTROLLING
REGISTERS OF
VIA. MEMORY MAPPED
ONTO PAGE 3 MEMORY
SPACE

0
I
5'

"O
c:

8
c:
-6'
s.
(')
~

!:.
~

I\)
co
c.>

):>)> -ro
~'"O
o~

PRINTER PORT EXPANSION PORT

34

TV

(/) 0.. -· - x

19 33 POWER

0
()

EXPANSION SOCKET (MALE)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

-ROMDIS. RESEHO CONT. IRQ Del DI 06 03 D4 A4 07 AIS Al4 Al3 Al2 All GND
I 3 5 7 9 II 13 15 17 19 21 23 25 27 29 31 33

AAP 02 10 RW 02 A3 AO Al A2 05 AS A6 A7 AB A9 AIO +5v

0
:J
:J

PRINTER SOCKET (MALE) CD
(")
..+

2 4 6 8 10 12 14 16 18 20
I I I I GRD L_l __ _t__i_ _ _J

I 3 s 7 9 I I 13 IS 17 19

0
:J ..

STB DO DI 02 03 D4 OS 06 07 ACK

PIN-OUTS FOR PRINTER AND EXPANSION SOCKETS

en ;
l~.

"
~

RGBOUTPUT
I. RED
2. GREEN
3. BLUE

·, 4. SYNC
5. GROUND

CASSETTE & SOUND
I. TAPE OUT
2. GROUND
3. TAPEIN
4·isOUND 5.
6· RELAYS
7. l
~'lC& ·,C-?

I

~
0
(/)

(§
()
0
:l
:l
(!)

!l
cs-
"' "'

286 Appendix 11 - ATMOS 1/0 Connections

Block Schematic-Chip Layout

6522
VIA

Appendix 11 - ATMOS 1/0 Connections 287

-=:;
-----RESET
---+-GND
---+----+SV
----;-------02

---------------------~·r------... 110

-------------1---------+--~-l/OCONTROL
----• -R/W

-=~~
BLOCK DIAGRAM
5HOWING EXPANSION BUS PIN-OUT

cs

''------....----'
EXPANSION

BUS

Appendix 12
BASIC Reserved
Words and Tokens
Here in a convenient form are presented the BASIC keywords and the tokens
which are used to store Orie BASIC keywords in a single byte of memory.
These are reserved words and may not be used in variable names.

ABS 216 FOR 141 PAPER 177

AND 209 FRE 218 PATTERN 174

ASC 236 GET 190 PEEK 230

ATN 229 GO 247 PI 238

AUTO 199 GOSUB 155 PING 166

CALL 191 GOTO 151 PLAY 169

CHAR 11 GRAB 159 PLOT 135

CHR$ 237 HEX$ 220 POINT 243

CIRCLE 173 HIMEM 158 POKE 185

CLEAR 189 HIRES 162 POP 134

CLO AD 182 IF 153 POS 219

CLS 148 INK 178 PRINT 186

CONT 187 INPUT 146 PULL 136

cos 226 INT 215 READ 149

CSAVE 183 KEY$ 241 RECALL 131

CURMOV 171 LEFT$ 244 RELEASE 160

CURSET 170 LEN 233 REM 157

DATA 145 LET 150 REPEAT 139

DEEK 231 LIST 188 RESTORE 154

DEF 184 LLIST 142 RETURN 156

DIM 147 LN 224 RIGHT$ 245

DOKE 138 LOG 232 RND 223

DRAW 172 LORES 137 RUN 152

EDIT 129 LPRINT 143 SCRN 242

ELSE 200 MID$ 146 SGN 214

END 128 MUSIC 168 SHOOT 163

EXP 225 NEW 193 SIN 227

EXPLODE 164 NEXT 144 SOUND 167

FALSE 240 NOT 202 SPC 197

FILL 175 ON 180

FN 196 OR 210

Appendix 12-BASIC Reserved Words and Tokens 289

SQR 222 TAN 228 TRUE 239

STEP 203 TEXT 161 UNTIL 140

STOP 179 THEN 201 USR 217

STORE 130 TO 195 VAL 235

STR$ 334 TROFF 133 WAIT 181

TAB 194 TRON 132 ZAP 165

Index

@ 72, 75
ABS function 29, 36, 108
Addressing 54, 121

machine code, 196, 201, 214, 273
Algorithm 17
AND 44, 109
Animation 73, 91, 190
Apostrophe 18
Argument, of function 25
Arithmetic operators 9, 27, 57
Arrays 33, 41, 59, 60, 97, 123
storing and recalling 66, 180

ASC 25, 110
ASCII codes 25, 40, 76, 78, 86, 228
ATN 29, 111
Attributes 72, 74, 78, 83

ASCII codes 230
Escape sequences 74, 78, 232

AUTO 64, 119

BASIC
interpreter 190
language 6
program storage 53, 57ff, 65
reserved words 11, 16, 288
tokens 57

Baud rates 63, 117
BCD (Binary Coded Decimal) Notation 195
Binary
notation 20, 50, 78, 82, 84, 191
conversion tables 244

Bits 50, 78, 84, 192
Bubble sort 41
Bytes 50, 54, 59, 192

CALL 112, 220
CAPS mode 12, 13
Cassette recorder

choice of 5, 61
connecting up 5, 62, 63, 65

Cassette storage 61 ff
auto-run programs 64, 119

joining programs 65, 116
loading programs 63, 115
saving programs 62, 119
storing/recalling arrays 66, 180
storing/recalling memory blocks 64, 119
verifying a saved program 65, 116

Cassettes
care of 67
choice of 62

CHAR 85, 112
Character

alternate set 54, 78
codes 25, 57, 59, 228
comparison 40
double height 75
flashing 75
graphics 86
non-PRINTing 25
on HIRES screen 86
sets in memory 5 3, 87

CHR$ 26, 74, 113
Chromatic scale 94
CIRCLE 82, 114
CLEAR 20, 59, 114
CLOAD 62, ll5
CLS 12, 117
Colon 19
Colour 71

attributes 72, 74
escape sequences 75, 232
inverse colours 76
memory locations 84
TV tuning 4

Comma 70
Commands 7
Complements 37
Concatenation 28
Conditions 36, 40, 44, 46
CONT 117
Control characters 12, 71, 7 3, 228
cos 29, 118
CSAVE 62, 119

292 Index

CTRLkey 12
CURMOV 81, 119
CURSET 80, 120
Cursor 4, 12

control keys 7, 12
graphics 80

DATA 32, 96, 121, 165
Decimal notation 50, 191
conversion tables 244

Decoding 274
DEEK function 54, 58, 60, 121
DEF 122
DEF FN 29, 122
DEFUSR 122
DELetekey 7
DIM 33, 123
Disc Drives S
Documentation 18
DOKE 54, 58, 125
Dollar sign 20
Double size characters 75
DRAW 80, 125

EDIT 14, 126
Editing programs 12
ELSE 37, 139
END 127
Envelope period 104
Error messages 235
ESCape sequences 74, 77, 78
Exclamation mark (Shriek) 220
EXP 29, 127
Expansion port S
EXPLODE 93, 128
Exponential notation 23, 59

FALSE 39, 44, 128
FILL 84, 129
Flags 41, 44
Flashing characters 75
FN 29, 130
Foreground/background parameter 80
FOR ... NEXT loops 31, 131, 167
PRE 132
Functions
numeric 29
string 25

GET 21, 133
GOSUB 47, 134, 151
GOTO 18,43,46, 151
GRAB 53, 136

Graphics 69ff
characters 86
high resolution 80
low resolution 78
medium resolution 79
Orie MCP-40 printer 252
text 69

HEX 27, 137
Hexadecimal notation 24, 27, 137, 192
conversion tables 245

High resolution graphics 80
HIMEM 122, 137
HIRES mode 53, 80, 138
screen grid 239

IF ... THEN ... (ELSE) 37, 139
ILLEGAL QUANTITY ERROR 27
Indexing 198
INK 71, 140
INPUT 17, 26, 141
Input/Output
circuitry 273
connections 284
memory locations 223

INT 27, 29, 142
Interrupts 148, 213

Join facility 65, 115

KEY$142
Keyboard 7
Keyclick toggle 12
Keywords 11, 108ff, 288

Languages 7
LEFT$ 28, 143
LEN 28, 144
LET 10, 11, 144
Line numbers 13, IS, 18, 57, 134, 135, 171
LIST 14, 145
LLIST 146
LN 29, 127, 146
LOG 29, 146
Logical operators 44, 109, 150, 152
Logical values 39
Loops 18, 31, 43
counter 38
FOR ... NEXT 31, 131
nested 34, 43
REPEAT ... UNTIL 36, 38, 167

LORES 0 mode 76, 147
screen grid 238

LORES I mode S4, 78, 147
alternate character set S4, 78
screen grid 238

Low resolution graphics 78
LPRINT S8, 148

Machine code I 90ff
addressing 122, 196, 201, 214
conventions 214
instructions 197, 202, 261
numbersystems 191
registers I 99
ROM routines & addresses 267
storage 137

Mantissa 24, S9
Medium resolution graphics 79
Memory 4, 50ff

area available for programs 132
characters in 5 3, 86
Input/output areas 223
locations S0, S2, 83
map 240
pages S3
ROM routines & addresses 266
screen S3, 64, 77
variables storage S9

MID$ 28, 148
Monitors 4
MUSIC 94, 149
envelopes I 03

Negative numbers 24, 36, 194
NEW IS0
NEXT 31, 35, 131
Noise channels 100, 10S
NOT 44, 150
Numbers 9, 10, 23, 36
binary 24, S0
Binary Coded Decimal (BCD) I 95
decimal 191
hexadecimal 24,27, 137, 192
integer 24, S4
negative 24, 36
range 23, 27
real 23, S9

Numeric functions 29

ON 46, 151
Operands 197
Operation codes I 97
6502 Op codes table 261

Operators
arithmetic 9, 27

conditional 38
order of priorities 10, 27
string 28

OR 44, IS2
Orie MCP-40 printer 5, 2S2
OUTOFDATAERROR 165

Index 293

OUT OF MEMORY ERROR 35, 43
Output, see Input/Output

Pages 53, I 98
PAPER 71, 153
Parsllig 190
PATTERN 82, 154
PEEK 54, IS4
Percent sign 24
PI, rr, constant 29, !SS
PING 22, 93, 155
PLAY 96, 100, 156
PLOT 76, IS8
POINT 83, 1S9
POKE 54, 78, 84, IS9
POP 160
POS 161
PRINT@ 72, 162
PRINT9, 162
abbreviation 9
text formatting 25, 69, 178, 183

Printer 5, 146, 148, IS2
Priority 10, 27
Prompt string I 7
PULL 44, 163

RAM 52,87
READ 32, 165
RECALL 66, 166
REDIM'D ARRAY ERROR 123
REDO FROM START message 17
Registers I 98, I 99
Relative co-ordinates 80
RELEASE S4
REM 13
abbreviation 18

REPEAT ... UNTIL 36, 38, 44, 163, 167
Reserved words 11, I 6
Reset button 8, 2S
RESTORE 121, 16S, 168
Result, offunction 2S
RETURN 47, 168
RIGHT$ 28, 169
RND 29, 170
ROM 52 routines and addresses 266
Rounding 24, 27
RUN 16, 20, 171

294 Index

Scientific notation, see Exponential
notation

Screen
attributes 72, 74
characters 85
colour 71
co-ordinates 76, 77, 79, 80, 83
display modes 53, 69ff
grids 238
memory locations 5 3, 64, 77, 84
saving on tape 65, 119

SCRN 77, 172
Semi-colon 70
SGN function 29, 173
SHIFT key 7
SHOOT 93, 174
SIN 29, 174
Sorting 40
SOUND 105, 177
Sound
channels 96, 105
envelopes 100, 103

SPACE key 7
SPC 178
SQR 29, 179
Stack 35, 47, 167
Status line 12, 77
STEP 13, 131
STOP 179
STORE 66, 180
String 9
numeric 26
slicing 28
variable 20, 59, 125, 132

STR$ 26, 76, 181
Subroutines 48, 52, 134, 160
SYNTAX ERROR 7, 11, 16
TAB 70, 183
TAN 29, 184
Ten's complement 195

TEXT mode 53, 69, 185
screen grid 238

Text formatting 25, 69, 178, 183
THEN 37, 139
TO 31, 131
Toggles 12, 71, 73, 75
Tokens 57, 58, 288
Tone channels 100, 105
TROFF 185
TRON 186
TRUE 39, 44, 186
TV 3,81

tuning 4
Two's complement 194

UNTIL 187
USR 122, 187

VAL 26, 188
Variables

assigning values 10, 17, 20
dummy 29, 44
floating point 59
garbage collection 132
integer 24, 59
loop 32, 35
names 11, 16, 20, 30
numeric 10, 23, 40
storage 59
string 20, 59, 60

Verify facility 65, 116

WAIT 19, 189
with MUSIC 97, 99

ZAP 93, 189
Zero page 53, 198

	Contents
	Acknowledgements
	Introduction
	1 - Getting the ATMOS together
	2 - The Language Lesson
	3 - Building with BASIC
	4 - Loops beyond compare
	5 - Down memory lane
	6 - Tapes and Data
	7 - Graphics and colour
	8 - The sound of music
	9 - Oric BASIC keywords
	10 - Introducing machine code
	11 - Input/Output
	Appendix 1 - ASCII Character Codes
	Appendix 2 - Escape Codes
	Appendix 3 - Error Messages
	Appendix 4 - Screen grids
	Appendix 5 - Memory map
	Appendix 6 - Binary/hex/decimal conversions
	Appendix 7 - Oric MCP-40 printer use
	Appendix 4 - Screen grids
	Appendix 8 - 6502 OP codes
	Appendix 9 - ROM Routines and Addresses
	Appendix 10 - Input/Output Circuitry
	Appendix 11 - ATMOS I/O Connections
	Appendix 12 - BASIC Reserved Words and Tokens
	Index

