USER
MONTHLY

with Oric Enthusiasts

“O.UM.
MEETING

Saturday
18th
July

Edited and Distributed by Dave Dick, 65 Barnard Crescent, Aylesbury, Bucks HP21 9PW

®
o" " THE EDITORIAL

[§
..! PAGE 2

BONJOUR,HELLO , AND WELCOME TO THE JULY ISSUE.
I ONLY HOPE I HAVE A BETTER JULY THAN JUNE IS5 TURNING 0OUT TO BE.

A& NEW DISC INTERFACE THAT WOULDN'T WORKj; A NEW 3" DRIVE THAT WOULDN'T
FORMAT DISCS - IT READS THEM ALL RIGHT; THE DATA FILE ON PAGE 3 O0OF THIS
ISSUE GOT CORRUPTED (a quick bit of editing,but still not perfect). THEN
TO TOP IT ALL I INJURED MY BACK. :

IN THE END EVERYTHING HAS TURNED 0OUT REASONABLY WELL. THANKS TO YOUNG
MATTHEW FOR COLLATING THIS AND THE JUNE ISSUE OF 0OUM - 2 HOURS BACK-
BREAKING WORK PER ISSUE,FOR WHICH HE TOOK A BRIBE! THANKS ALS0 TO CHRIS
HEARN FOR GIVING UP A SUNDAY AFTERNOON TO HELP ME SORT OUT MY STOCK AND
FOR THE SOLDERING WORK. DOES ANYONE WANT TO BUY A CAR RADIO/CASSETTE IN
NON-WORKING ORDER! _
DSTQBIEK 'CTRL 2°. NOW A 'CTRL X'. S0 FAR 50 GOOD - THIS PAGE SHOULD COME

|

THANK YOU FOR THE LETTERS ABOUT THE LAST ISSUE. THREE OUT OF FOUR SAID
THAT IT DID TURN OUT 0.K. THE OTHER ONE HAS A CAT THAT DOES NOT LIKE
"WHISKAS ' . ‘

ALL ORDERS SHOULD BE DEALT WITH BY THE END OF JUNE AND MOST OF YOUR
LETTERS. '

I'M AFRAID BACK ISSUES WILL HAVE TO WAIT ANOTHER MONTH. MOST LETTERS
WILL HAVE BEEN DEALT WITH.

IT IS HOPED THAT FROM SEPTEMBER THAT FRANK BOLTON WILL TAKE OVER THE JOB

- OF CASSETTE DUPLICATION ON ‘MIRAGE’ TITLES. THANKS FRANK - THE CHEQUE IS
-IN THE POST.

~ THIS ISSUE WILL I'M AFRAID CONTAIN ONLY 21 PABES. NO A-Z OF SOFTWARE
HOUSES, NO LISTINGS, AND NOT MUCH IN THE WAY OF GAMES/ADVENTURE HELP. ALL
WILL BE PUT RIGHT FOR THE SUPER DUPER DOUBLE Sth BIRTHDAY ISSUE DUE OUT
AT THE BEGINNING OF SEPTEMBER.

DO NOT FORGET - YOU WILL NOT RECIEVE AN AUGUST ISSUE.
oumM DISC

I HAVE HAD A FEW REPLIES TO THE SUGGESTION ABOUT AN OUM DISC. I HAVE
ALSO GATHERED SOME PROGRAMS FOR IT. UTILITIES/LISTINGS THAT FRANK BOLTON
HAS BEEN COLLECTING,PLUS SOME ITEMS THAT HE HAS WRITTEN. THERE WILL ALS0
BE MANY OTHER ITEMS NEW TO MOST OF YOu. I THINK IT WILL BE WORTH THE
EFFORT ,BUT ONLY IF A FEW MORE OF YOU WRITE TO SAY THAT YOU WANT IT. DROP
ME A LINE OR TELL ME AT THE °'0ORIC MEET’.

AU REVOIR

WELL THAT'S YER LOT. I'M OFF TO ENJDY MY VACATION. JUST IN CASE WE GET
SOME WET EVENINGS,WE ARE TAKING THE ORIC. NOT FOR WORK,BUT PURELY FOR
PLEASURE . MATTHEW WANTS TO COMPLETE ‘ZEBULON'. THE WIFE WANTS TO COMPLETE
‘MAHJONG® . LOUISE WILL BE HAPPY ZAPPING 'EM UP ON “ULTIMA ZONE', AND I
WILL PROBABLY NOT GET & LOOK IN!

PERHAFS WE HAD BETTER TARE THAL

INDEX
PAGE 1 THE FRONT COVER - Jon
PAGE 2 @ THE EDITORIAL
PAGE 3 NEWS . -
PAGE 4/5/6..... RAMROM - a smashing piece from JON —
PAGE 7/8 MACHINE CODE FOR THE ATMOS (Pt. 17) - Peter Bragg delves
fur ther.
PAGE 9/10/11 .. THE ORIC SERIAL PORT (Pt.3) - Trevor °‘POPCORN’ Shaw gets
into Registers. Also a look at the other ATMOS, thanks to Stuart Wright.
PAGE 12 THE FUNCTION KEY AND SEDORIC - Dave Dick shows the short
cuts. ’
PAGE 13 REVIEW OF 'ZEBULON® PLUS a couple of previews. - Dave
Dick
PAGE 14 BITS ‘n°’ BOBS
PAGES 15 -18. ... ORIC ENTHUSIASTS - Alan Whitaker looks further at
Geoff's book.
PAGE 19 A BIT MORE FROM ALAN + A BIT MORE FROM ME.
PAGE 20 .ueeavnn READERS LETTERS

PAGE 21 MORE FROM ME

N E W S 'Q

4
PAGE 3 :
BULLETIN BOARD

I recently recieved a telephone call from Chris Dalby of Bradford.
He had dug my number out of an old issue of the now defunct - 'New Computer
Express’. ~
Chris is setting up a Bulletin Board for non-mainstream computers. He runs a
QL and is able to read Data files on 3.3" disc. He is offering to put on an
ORIC section. He is already running a test board. I've agreed to send him the
OUM pack and details of the next ORIC MEET,just in case some Oric users hap
pen to log on. If you want an Oric section on the board,then please write to
me. It is no good putting in a lot of effort for Jjust one or two. If this ta
kes off,then we will need a volunteer to edit the Oric section.

The system runs on VIEWDATA (same as Prestel), and I would assume that the
Prestel software available on Public Domain would allow one to log on. The
board is a ‘ring back’ one - ring twice and ring back. Number 1s the same a

s Chris’'s telephone number - 0274 487601. :
Chris’'s address is : 74 St.leonards Rd.,Bradford,West Yorkshire. BDB8 90F.
Why not try him out and DON'T FORGET to let me know if you are interested. 1
have a few of the Oric Modems 1in stock.

OUM IS NOW CLOSED UNTIL JULY 13th. IF
YOU HAVE MONIES TO SEND FOR ORDERS / SUBSCRIPTIONS etc., PLEASE TIME THE
M TO ARRIVE ON OR AFTER THAT DATE.

THIS MONTH'S LUCKY WINNER IS5 MEMBER NO.135,WHO IS DENIS BONFIELD FROMF DEAR
OLD CRICKLEWOOD. HE RECIEVES A FREE COPY OF 0OUM.

THE 4th ORIC MEET IN AYLESBURY ON SAT.JULY 18th LOOKS LIKE BEING THE BIGGEST
EVER. SWELLING THE ATTENDANCE ARE JOHN HURLEY FROM SOMERSET AND HENRY MARKE
AND HIS WIFE FROM PORTSMOUTH. WITH QUITE A FEW WIFES/GIRLFRIENDS COMING TOO
,IT LOOKS AS THOUGH A SHOPPING TRIP WILL TAKE PLACE. HENRY'S WIFE (RENE) WIL
FPROBABLY SETTLE HER SELF DOWN AT AN ORIC PLAYING'® TETRIX® ALL DAY
HAVE RECIEVED FROM TREVOR SHAW AN AUDIO TAPE CONTAINING HIS "POPCORN® PIECE
LJWHICH WAS A WINNER IN THE 'COMPOSER’ COMPETITION. ALSO ON THE TAPE ARE 0
THER WINNERS,INCLUDING A RENDITION OF °THE SABRE DANCE’. I°'LL BRING ALONG T
HE HI-FI S0 THAT YOU CAN ALL LISTEN TO THEM OVER LUNCH.
RON EVANS FROM WOOD GREEN IS TRYING TO PERSUADE HIS WIFE TO COME WITH HIM.
GRAEME BURTON POPPED IN RECENTLY. AMONGST THE GOODIES HE LEFT FOR THE
RAFFLE WAS A BOTTLE OF ‘OLD F..T'. SEE RAMROM FOR FULL SPELLING.

STUART WRIGHT ASKS IF THESE PARALLEL PORT HARD DRIVES CAN BE USED WITH OUR
ODRICS. HE THINKS IT MAY BE A TASK FOR Dr. RAY!

'CAR MADNESS’ FROM STAALE EIKBRAATEN OF NORWAY HAS JUST ARRIVED. IT IS NOT
YET A FINISHED GAME. SIMILAR IN IDEA TO 'DRIVER' etc. I WILL KEEP YOU POSTED

RAMBLING IN THE ROM - 4

Th r h

I mentioned some while ago that I had had a chat with Paul
Kaufman about the early days of Oric, in preparation for a new
edition of 'The Story So Far' (still available at £1.50, etc...).

. The chances of a new edition in the near future are remote, so

I +thought that this month I might share a few of Paul's
revelations about the formative years.

When Tangerine decided to produce an integrated design computer,
the original aim was to go for an executive desktop machine which
would link to Prestel and compute. Paul wrote a memo listing what
he thought were the right features for the 'Microtan 2' - sound
and graphics, a modulator and so forth. The result was a design
in late 1981 for the 'Tangerine Tiger', a desktop machine with
three precessors - a Z80 for CP/M, a 6809 for I/0, disc and
printing, and a graphics chip. In the end this design was sold
off to a company called H.H. Electronics, and was never in fact
produced. The Microtan 2 plus a Prestel capability was the basis
for the Oric, a name incidentally that does come from 'Micro'.
Paul says that they spent hours trying to think up a name, much
of it toying with anagrams of 'micro'. Someone came up with

'Oric’', which sounded good. Then they realised they had left out

the 'M', but it still sounded good, and the name was born!

At this stage they saw what Sinclair had done, and their
financial backers, British Car Auctions, wanted higher volumes
from the mass market to be the target. Thus was the Oric-1 born,
although the first mock-up retained its executive image with a
teak and apple-green .colour scheme! Paul has a photograph to
prove it.

The ULA was designed by Dr. Paul Johnson, the draughtsman for the
design work being a chap called Roger, still believed to be
living near Cambridge. The prototype was built from discrete
logic chips, with many hours being spent trying to get it to go.
It was produced for Oric by California Devices Inc., of Silicon
Valley.

~ Tangerine had a Microsoft licence for the Microtan, but didn't

bother to obtain extra permission to use Microsoft Basic for the
Oric. It was all kept hush-hush during development, and when
Microsoft got wind of what was happening, Oric were unable to
release the details of the ROM as they might have intended. That
is why we had all the refusals to detail the ROM at the time, and
had to wait for enterprising authors like Leycester Whewell to
tell us what was in there! As for the authors, Peter Halford
('Ratters') used to work in a TV shop in Northampton, and wrote
the cassette routines, described by Paul justifiably as 'shoddy'.
He also did Oric Mon, but Geoff Phillips had to spend weeks
debugging it. Andy Brown and Chris Shaw did most of the ROM, they
were professionals in every sense. Paul himself wrote the music
routines, on a Microtan in Forth (they had an Oric emulator
running on the Microtan). He hand-coded them into machine code,
and passed them to Andy, who put them in the ROM. Originally he

had 20 to 30 different sounds, and had to pick the best six. For
some reason he didn't chose his favourite, a superb rendition of
a fart!

The plastic case was designed by outside professionals.
Apparently there were great rows about the mock speaker holes.
The idea was to have holes, but the moulding machine couldn't
cope, so dummies were the compromise. The advertising and
publicity designs were done by Paul Sample, who did the
illustrations for the Tom Sharpe books. :

And that folks, is just a small insight into the heady days. One
day, I promise, there will be a second edition of 'The Story...'

An mbli ' '

'ON' (COMMAND)

Principal:
Having calculated the displacement, the GOSUB or GOTO code is saved and then
the search commenced, jumping from comma to comma. If the displacement is too
long, a return is made to the end of the instruction and an exit occurs without any
action.
If it is nul, the first DEC #D4 makes it #FF, and it becomes a too lengthy
displacement.
This method of simulating a simple GOTO or GOSUB by diverting directly to the
interpreter is clever.
All line numbers are evaluated until the required one is found, which necessarily
involves a loss of speed if you are waiting for the last number...

CA78 ISR $D80OD CAC2 JSR $D8C8 Evaluate displacement in #D4
CA7B PHA CACs5 PHA ~ save the code (GOSUB or GOTO)
CA7C CMP #B CAC6 CMP #B GOSUB?

CA7E - BEQ CA84 CAC8 BEQ CACE yes, jump

CA80 CMP #97 CACA CMP #97 GOTO?

CA82 BNE CA75 CACC BNE CABF no, error

CA84 DEC D4 CACE DEC D4 Take following number
CA86 BNE CASC CADO BNE CAD6 if not the correct one, continue
CA88 PLA CAD2 PLA recover the instrcution code

CA89 JMP $C900 CAD3 JMP $C917 and execute the command

CAS8C JSR $00E2 CADG6 JSR $00E2 jump ', or GOTO/GOSUB (first time)
CA8F JSR $CA98 CAD9 JSR $CAE2 get the line number

CA92 CMP #/ CADC CMP # if it is followed by a comma then
CA94 BEQ CA84 CADE BEQ CACE continue the search
CA96 PLA CAEO PLA readjust stck if displacement too great

CA97 RTS CAE1 RTS and exit

Entry:

EVALUATE A LINE NUMBER IN #33-#34

C and A must be set as on the exit from a JSR #00E2 or #00ES8: 0 if a number, 1 if
_not. .
Exit: #33-#34 contains the value, an error is generated if the number is greater than 64000.
Y is untouched by this routine
TXTPTR points to the first non-numeric character, and the exit is
made by a JSR #00E2 (A, N and Z correctly set).
Principal:
Each character is multiplied by 10 to ensure that one ends up with a whole number.
The test for an excessive number is - done using multiplication.
#1A00=6400=64000/10. 6400 is practical because you only have to test the high byte
to know if the limit is exceeded. 64000=#FAO0Q is also a 'whole' number, but it would
have been necessary to add a LDA $34 to test the high byte after the multiplication
by 10. The test is therfore done before multipilcation.
It is a fortunate chance that 64000 and 6400 are 'whole' numbers in hexadecimal as
well as decimal...
CA98 LDX #00 CAE2 LDX #00 Set the result to 0...
CA9A STX 33 CAE4 STX 33
CA9C STX 34 CAE6 STX 34
" CA9E BCS CA97 CAE8 BCS CAEl Exit if not numeric character :
CAA0 SBC #2F CAEA SBC #2F reduce to 0-9 (C=0 so subtract #30)
CAA2 STA 24 CAEC STA 24 and save
CAA4 LDA 34 CAEE LDA 34 take high byte of result
CAA6 STA 91 CAF0 STA 91 and save it
CAA8 CMP #19 CAF2 CMP #19 if result >= #1900=6400, too high a number so
CAAA BCS CA80 CAF4 BCS CACA 'SYNTAXERROR'(A cannot have value of #97)
CAAC LDA 33 CAF6 LDA 33 Take low byte of result
CAAE ASL A CAF8 ASL A x2
CAAF ROL 91 CAF9 ROL 91 - and high byte
CAB1 ASL A CAFB ASL A x4
CAB2 ROL 91 CAFC ROL 91 and high byte
CAB4 ADC 33 CAFE ADC 33 +original: x5
CAB6 STA 33 CD00 STA 33
CAB8 LDA 91 CD02 LDA 91 recover high byte
CABA ADC 34 CD04 ADC 34 add original and transfer
CABC STA 34 CD06 STA 34 x5, so
CABE ASL 33 CB08 ASL 33 x2x5=x10
CACO ROL 34 CBOA ROL 34 not forgetting the high byte
CAC2 LDA 33 CBOC LDA 33 add the newcomer
CAC4 ADC 24 CBOE ADC 24 which takes the place of the units
CAC6 STA 33 CB10 STA 33
CAC8 BCC CACC CBl12 BCC CB16 _
CACA INC 34 CB14 INC 34 still not forgetting the high byte
CACC JSR $00E2 CB16 JSR $00E2 Take the next character
CACF IMP $CA9E CB19 JMP $CAE8 and recommence

No room for a tailender this month - see you at the Meet

Jon Haworth

Machine Code for the Oric Atmos (Part 17) Peter N. Bragg
The Story so +far .
———m—meeee e~ We have looked at the basic requirements for machine code
programming on the Oric. Last time in Part 16 of the series, all that we have
seen so far was summar ised and put together, to provide a small, simple
machine code programming kit. This consisted of an Instruction Subset. that
is a list of just five essential instruction types, plus two Operating System
calls that make it possible to read the keyboard and write to the display
screen. Also included, was a reference columm to locate information on the
various items, if required.

Back to the Drawing Board :

————————————————————————— A couple of issues ago, back in Part 15 of the
series. we looked at the Operating System call "VDU" which can display codes
put into Register "X". A short demonstration routine was shown which would
load and display three codes one after another, pausing between each, to
allow you to see what effect each one had.

As I pointed out at the time, the routine worked well enough, but could
hardly be considered a good program. For those who do not have Part 15 of the
series handy this moment, I will recap briefly. Essentially, each item was
displaved using four seperate instructions, (1) to fetch the item (2) display
it (3) read the keyboard and (4) wait for a key to be pressed. Instructions
(3) and (4) created the pause for observation. These four instructions were
repeated each and every time a new code was fetched for display. This meant
that no less than twelve instructions were needed to display just three codes.

It should be obvious that if the routine was extended in the same way to
display many more items, it would soon become enormous and clumsy and waste a
lot of your time and Oric’'s memory.

Now if yvou look at that original routine, vou will see that only the "fetch"
instruction changed, the remaining instructions (2). (3) and (4), which
display the item and provide the pause, are exactly the same for each item
displayed. It would be far better to make those three into a short subroutine,
which could then be called up with a single instruction. After all, that is
what we would we would do if we were writing Basic.

This precisely what has been done in the new listing presented here. You can
enter it into the Oric using an assembler, or in hex code form, using the
"Hexload" program from Part 7. Once again, to use it, just CALL#1012 and then
tap the Space Bar a few times to display the contents of Parameter Block 1001
at the cursor. The display codes used in this sample, illustrate how the
"Newline" operation is done, but of course, you can try other combinations in
the RParameter Block, to see how the "VDU" call handles them.

Why make changes 7

—————————————————— The main point of this article was to show how programming
can be made easier., in this case by using a subroutine. For a start you have
less writing to do and there is a saving of memory space. More important, it
should make the program easier to understand as well.

0f course this "Displavy Operation” is only a small demo program and the
improvement is small too. Most of our demo programs need to be small so that
they can be accompanied by an explanation of what actually is being
demonstrated. Even so this version displays twice as many items as the
(Sriqinal version, for only a small increase in size.

Dric - Dew

1ogl: 41
1882:42
1883:04
1804: 44
10@5:4D
1806246

0 b

: HAH
: ”Bn
s {LF>
HIR K
: <CR>»
HE

--start--—-

isplay Operation

~--Parameter Block 10@1---
+ Six ASCII code

items for the
disnlav.

---Pause to check screen--—-

181@:28 43 1B ¢ J5R 1843 : Hait for a kevpress.

1813:4E &1
1816:20 20

1017:AE 02
181G:20 48

1B1F:AE B3
1922:28 40

1825:AE 04
1628:20 40

182B:AE 83
{B2E:20 40

1831:AE 86
1034:20 40

"t 1B37: 60

[J5F 1948

18 : LD
: J5R

s LIX
18 : JSR

HR) |
18 ; JsR

Lo
10 : J5E

18 : LN
1@ & JSR

10 L
19+ J5R

: RIS
-=-gng---

Jromm——
--start---

---Displav Ttem I -——

Load item | inte Eeg X"
and displav it, then
pause to check screen,

1981 .
1940 =

---Displav ltem 2 --—-
1982 1 Load item 2 into Res *X°
1948 : and displav it, then
pause to check screen,

~---Displav ltem 3 ---
1883 1 Lead item 3 into Reg "X°
1848 : and display it. then
pause to check screen,

---Displav Item 4 ---
1824 & Lead item 4 into Reg "X°
1940 ¢ and display it, then
pause to check screen.

---Display ltem 5 ---
1885 : Load item 5 into Reg "X"
1840 : and displav it, then
pause to check screen.

---Displav ftem b ---

Load item & into Reg "X"
and display it, then
pause to check screen.

1886 :
1048

~--Finish-—-
Ezit back to Basic.

1049:20 7C F7 ¢ JSR F77C @ Uze DS "VDU™ to displav

1943128 78
1846:18 FB
1048: 460

EB :
+ BPL
: RIS
---gng---

contents of Register “X°.

---Pause to check screen---

JSK EE7B : Mait for keypress (BTORKR)
read kevboard until then.
: Return to calling routine.

18432

g Aor 92

 been cut down too.

{ DISFLAY ITEM & PAUSE 1----
: Enter with item in Rea "}°

Using subroutines for repetitive
operations in programs, will considerably
reduce the program size, particularly when
larger programs are being written. However,
more useful to us at this moment, is how a
subroutine like this can also be used to
simplify the programming.

This new version of “"Display DOperation®
now only needs two instructions for each
code item displaved and furthermore, the
essential description for each item has

A good program
description is essential, but it is best
to keep it as small as possible. The
"Display & Pause" operation is described
in the subroutine and need not be repeated
elsewhere. When the subroutine is called
into use, we only need to note briefly how
it is being used, which is easier. This of
course applies to all subroutines, they
only have to be described in detail once,
any instruction that calls one, only needs
a brief note of how that subroutine is
being used, which makes the program easier
to write and understand.

While this version of "Display Operation”
is an improvement on the original shown in
Part 15. I should of course point out that
it is far +rom perfect and could still be
improved upon. However, that is not the
point of the excercise. The aim was to
show that some improvements can be guite
easy to make.

It is well worth looking at your program
with a critical eve. with the aim of
making some improvements, but dont expect
to write super efficent programs all the
time and if you are Jjust starting out on
machine code programming, dont even bother
to try for perfection, it isn’'t worth the
effort. The most important thing to
concentrate on when writing machine code.
programs, is to make it work first.
Cleverly written programs are useless if-
they dont work. Once vou have a working
program and have saved it. you can then
try improving on that. Stick to making
simple improvements like the one shown
here, usually thev are the most effective,
anyway. If you are too clever, you will
have a heck of a job when you want to
update and improve your software later.

it'll be
it you see what I mean 1!

Next time will not be next time,
the month after,

THE ORIC SERIAL PORT Part 3 9

in part two | provided listings in BASIC which show how easy and simple it is to make use of the Oric serial
port, | did not explain much about the interface and its registers but 1 intend to put this right now,
However, the jargon may cause some problems for those of you who are not familiar with serial
communications, 1| shall give explanations but by necessity these will be brief: you may need to do some
further reading in order to get the most out of this article!

Okay, let's have a closer look at what the programming last time did to the serial port registers. The
subroutine at line 200 of listing 2 sets up the interface, The settings given in that program configure the
interface to operate at 300/300 baud with a word length of 8 bits and 1 stop bit (line 210: POKE £383,22),
In addition, parity mode was disabled, RTS was set to low and interrupts were enabled (line 220: POKE
£382,5).

Perhaps | better explain what some of those terms mean:
Baud is the label given to the measure of the rate of data fransmission.

Word length is the length of each unit (data package) sent., For an ASCI| character this need be no more
than 7-bits long. For characters with codes of more than 128 (e.g. machine code files) then 8-bits will be
needed, These will normally be the only word lengths you will need, however, the Oric interface can cope
with word tengths of between 5 and 8 bits. 5-bit words are not often used except by radio amateurs for RTTI
communications (which | know next to nothing about),

Stop bits are added to the end of each character sent, Now since a serial interface sends data

sequentially each package of data (usually a character) has to be preceded by a start bit (for asynchronous
communications) so that the receiving end can unscramble ali the bits and correctly interpret the
characters, Start bits are preset but the number of stop bits added is set by the user: you can have either
1 or 2 stop bits (actually you can also have 1} stop bits if you are using a word length of 5-bits, but we
shatl ignore that!). So each package of data might look like this:-

//StartBit/Bit1/Bi+2/Bit3/Bit4/Bit5/Bi16/Bit7/Bi13/StopBit//e.ee.

i.e. 1 start bit, 8~data bits, | stop bit, The total length In this case is 10 bits (hence a speed of 300
baud does not directly franslate to a particular number of characters per second, since it depends upon word
length and number of stop bits, In this example 300 baud would work out at about 30 characters per second.
i.e. 300/10 if parity is disabled),

Parity can be set to odd, even or no parity. This is a simple means of automatically checking data
integrity through the generation of a parity check bit, However, it is frequently not used (i.e, sef tTo no
parity/disabled) since software methods (e,g. splitting the data into discrete blocks and using checksums)
have been found to be more effective,

The important thing to realise is that the system receiving the data has to be set up the same as the one
transmitting {(i.e. same baud rate, word length, number of stop bits and parity settings), otherwise ali that
will be received will be nonsense! Therefore anyone who dabbles in the murky world of seria!l ports and data
transmission has to have some knowledge of baud rates, word length, stop bits and parity. Any
communications software, including Oricomms, should allow you to easily alter these settings to achieve
different serial port configurations, In practice, two configurations are more often used than others,
These are 8-bit word length, No parity, 1 stop bit (i.e. 8N1) as used by many bulletin boards; and 7-bit
word length, Even parity, and 1 stop bit (7E1) as used by viewdata services such as Prestel, The most
frequently used baud rates are 300/300, 1200/75, 1200/1200, 2400/2400 and 4800/4800, Higher rates tend to
be used for direct computer-to-computer data transfer only.

Okay, so what about the Oric serial interface internal registers. The 'heart! of the interface is the 6551
Asynchronous Communications Interface Adapter (ACIA), This is a very sophisticated chip designed
specifically to be used with the 6502 microprocessor (the 'heart! - and brain! - of the Oric). The 6551
has four registers and, as stated last time, there are four memory locations in page 3 of the Oric's memory
map which give you access to them, | shall describe each of these in turn:-

‘ .
®
£380: THE TRANSMITTER & RECEIVER DATA REGISTER

This is where your transmitted data is POKEd fé, or your received data is PEEKed from. Incoming data is
overwritten/lost if it is not read frequently enough, This is why it is best to use interrupts to ensure
reading this register is given priority, especlially when operating at the faster baud rates.

£381: THE STATUS REGISTER

This allows you to find out about the status of the 6551 chip, if bit 7 is high this indicates that the
6551 has caused the processor interrupt, This bit is cleared when the status register is read.

Bit 6 can be ignored since DSR which it represents is not used in the Oric serial interface,

Bit 5, when low, indicates that a data carrier has been detected (DCD),

Bit 4 indicates whether or not the transmitter data register is full or empty (high = empty)., This bit is
cleared when a new character is written to the transmitter data register. '
Similarly, bit 3 indicates the status of the receiver data register (high = full),

The final three bits give an indication of the integrity of the received data but do not produce an
interrupt. Bit 0 (parity error), bit 1 (framing error) and bit 2 (overrun) would normally be checked when
the recelver register is read (if they are checked at atl). A 1 (bit high) in any of these indicates that
there may be a problem with the character received., Bits 0-3 are cleared automatically when the receiver
register is read,

£382: THE COMMAND REGISTER

This allows you to control specific modes and functions provided by the 6551 e.g whether or not parity
checking is used,

Bits 7-5 are concerned with parity, Bit 5 controls whether or not parity checking will be used, Set bit 5
to 0 to disable parity and to | to enable it. |t doesn't matter what bits 7 & 6 are set to if bit 5 is 0
(parity disabled). Otherwise, set bits 7 & 6 both to 0 for odd parity, or to 0 and 1 for even parity,

Bit 4 should normally be set to 0, |If set to 1 it provides a simple way of testing some aspects of serial
port software since then transmitted characters are echoed back, not transmitted, For this to work bits 2 &
3 must both be low,

Bits 3 & 2 conirol the RTS line and the ftransmitter interrupts., When both are set o 0 then the RTS line is
fow (i.e., Indicates to connected modem etc that the computer is not ready to send data), Bit 3 should be
set to 0 and bit 2 set to 1 for RTS to be high with transmitter interrupts enabled, or vice-versa for RTS
high with transmitter interrupts disabled.

Bit 1 controls whether or not the 6551 will generate a processor interrupt, Set to 1 for Interrupts
enabled, 0 for interrupts disabled.

Bit 0 controls the DTR line of the serial port, In the Oric set-up this is used to turn the Oric Modem
on-line, Set to 1 to turn on-line, O to drop the line,

£383: THE CONTROL REGISTER

This allows you to set the baud rate, the word length, and the number of stop bits,

Bit 7 controls the number of stop bits: when set low, 1 stop bit is generated; when set high, 2 stop bits
are generated (but 1 stop bit for 8-bit word lengths with parity),

Bits 5 & 6 contro! the word length: both should be low for 8-bit words, bit 5 high & bit 6 low for 7-bit
word lengths,

Bit 4 controls the source of the receiver clock (necessary for when the receive & transmit rate are
different e.g. 1200/75), This is usually set to 1, but if the receiver clock rate is different to the
fransmit rate then this should be set to 0, MNote however, that unless the Oric Modem is being used with the
interface then a clock signal will need to be connected to the RxC pin of the interface (this is covered in
the Oricomms manual).

Bits 0-3 allow the selection of different baud rates. Only the most common are given below:-

75baud O O 1 0
300 o 1 1 .0
1200 v 1 0 0 0
2400 10 1 0
4800 " 11t 0 0
9600 T T T

k

Bytes & Bits: For those of you who may be baffled by the idea of 'bits!, | shall give a quick

explanation, The Oric is an 8-bit micro, This‘means that each memory location can hold one byte (= 8 bits
- binary) of data, Each bit can only be high (1) or low (0) but represent the different decimal values
shown below, These can be tested separately by PEEKing the memory location with the AND logical operator
and an appropriate number according to which bit(s) are being tested., 8-bits can represent decimal numbers
between 0 and 255, Each bit when high will represent the following values, or 0 when low:~

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
128 64 32 16 8 4 2 1 Total = 255

For example, in listing 2 given in part two, lines 120 and 130 use 8 and 16 respectively to AND with
PEEK(£381), This tests bit 3 and bit 4 respectiveiy of the status register, :

Using the information provided above fegether with the BASIC programs in part 2, it should be possible for
you to work out how to expand/change the subroutine beginning at iine 200 to aiter the inferface
configuration, and perhaps to develop other features in the transmit/receive routine. |f anyone is really
keen and would |ike more information on the 6551 chip registers, | can supply it (SAE piease),

Next time | shall discuss transferring files between the Oric and another computer, and will suggest a
structure for a file transfer program,

Trevor Shaw,

FX— ATMOS 1954

FX-ATMOS 1954

Patriotically finished in a co- _

lour scheme of red, white and

blus, the FX-Atmos was the - X

star of Ford’s stand at the ! FX-ATMOS 1954 /] 8 2 2

1954 Chicago Automabile

Show and featured ideas "so

advanced that they had for- [O [O U r\ P h ‘r' .

merly been seen only in Ford O O e

styhing studios”. The FX-At-

mas, boasted Ford Division .

chief Lewis D. Crusoe, repre- —

sented “one of many avenues a ' O a O P e a e P

which styling could take in ‘

the future”. Strange devices » :
resembiing giant hypodermic — . .

needles projected from the b S I / L ‘l’ \ .

front of the nacellg-like front - e l r\ a G ﬂ a P
wings, a curious bubble ca-

nopy protected the passeng-) :
ers from the elements and

the driver sat centrally, guid- | ﬂ

ing the car with tiny hand .

controls. The power source, |

mam) et JONH. to defend
youin Court M

THE FUNCTION KEY AND SEDORIC DOS - Dave Dick
PAGE 12

LIKE MANY MANUALS, THE SEDORIC MANUAL ,THOUGH VERY WELL WRITTEN,CANNOT FOR
OBVIOUS REASONS DETAIL EVERYTHING IN FINE DETAIL. OVER THE NEXT FEW MONTHS
I HOPE TO PASS -ON TO NEW AND OLD USERS ALIKE THE TIPS THAT I HAVE PICKED UP.

IF YOU HAVE ANYTHING 0OF RELEVANCE;THEN PLEASE SEND IT IN.

WE START WITH THE USE OF THE 'FUNCTION® KEY. MANY MOONS AGO I GAVE A LIST
OF SOME OF THE COMMANDS AND ROUTINES THAT ARE PRESET IN YOUR DOS. IT IS SO
MUCH EASIER TO DO A "FUNCT J * INSTEAD OF TYPING IN !DIR EVERYTIME. WHEN
ONE 1S TYPING IN A PROGRAM, IT IS FAR EASIER TO HIT 'FUNCT J° RATHER THAN
TYPE IN'CURSET!

I WILL FIRSTLY LIST THE USES OF THE FUNCTION KEY FOLLOWED BY A KEY, AND
THEN GO ONTO THE USE OF "FUNCTION' + 'SHIFT® + A KEY.

FUNCT +

1 or 3 or 4, > 0or < or ¢t or " or $ or 4 or ~ or (or £,= ?HEX$ (DEEK (#

“{note that in some instances the SHIFT key will need to be wused e.g. to
get the % sign,then you have of course to use SHIFT 3)

2 = PAPER O:INK 7

3 = DOKE #24E,#108 4 = DOKE #245,#EE22

5 = DOKE #243,#484 . & = DOKE #23C,#EB78

7 or 1 or #= CALL #FBDO 8 = RENUM 1000

@ = RENUM 1000,,1000 O = NUM END

" OKAY! A quick look along the top row of keys to see what else we can use.
"How about: FUNCT @ (i.e SHIFT and 2) for RESET, FUNCT ! (SHIFT and \) for
LIST 1000~ . Then there is FUNCT) (SHIFT O) for SAVE". We drop down a
row for FUNCT for SAVEU" and down a further row for FUNCT ° which gives

EXT. Right,that’'s the first 16. I am not implying that you are all thick
by stating that you have to use SHIFT 5 to get “. It's Just that I don’'t
know which of the characters will print out and this way vyou will get a
clue. I can’'t see how to print the - you know, those squiggly brackets.
If I hold down SHIFT and press one of them,nothing happens,but 1if I press
them twice then an aodd character appears Dn screen!

Anyway, I'm just going to make a cuppa tea and then back to this.

Now the most commonly used,which is FINCT and right square bracket. This
gives 'DIR and of course hits the RETURN key for vyou.
Now saome more : -

FUNCT +

- or ESC or + or left squiggly bracket = OLD = (equals) = RUN

N = LIST Q = GOUND ... W = PATTERN ... E = ELSE .. R = REPEAT

T = THEN Y = DRAW ... U = UNTIL .. I = IF ... 0 = 0N ... P = PEEK

A =AND ... 5 =8TR% ... D = DEEK ... F = FOR ... G = 60OTO ... H = HEX$

J = CURSET ... K = KEY$... L = LEFT$... X = CLOAD C = CLS... V =
VAL

B = PAPER ... N = NEXT ... M = MID% ... / = TRON ... teft Cursor = CALL
Down Cursor = NEW ... SPACE BAR = CTRL A & Times (i.e. COPY & CHARACTERS)
Up Cursor = EDIT ... Right Cursor = LIST ... & = HIRES ... X% = TEXT

By now you should of started to remember a few. Especially G for goto and
E for ELSE etc.
And so to the last of them,utilising the same keys as above,but bringing
the SHIFT key into use.

FUNCT + SHIFT +
CHAR ... £ = END ... R = RETURN ... T = T0 ... Y = CIRCLE

Q = PLAY W =

U = TEXT . I = RIGHT$... O = SAVE" ... P = TROFF (also obtained with ?)
f=ASC ... 5 =SCRN ... D = DOKE ... F = FILL ... G = GOSUB ... H = HIMEM
J = CURMOV ... K = CLEAR ... L = RIGHT$... X = CSAVE ... C = CHRS$

V = LEN ... B = INK ... N = NOT ... M = MUSIC ... Up Cursor = CONT

Right Cursor = AUTO ... Z = DATA

Left Cursor ,Down Cursor OR SPACE BAR WILL ALL GIVE 7HEX$(DEEK(#, same as
FUNCT + 1

S WELL I TRUST YOU CASSETTE USERS WERE SUITABLY BORED BY THAT. THERE WAS IN
FACT A F.G.C. UTILITY FOR TAPE USERS WHICH DID SIMILAR THINGS.

IF ANY DISC USERS DESIGN A THINGY TO GO OVER THE KEYS FOR USE WITH THE
FUNCTION KEY,THEN 1 NDULD BE PLEASED TO RECIEVE ONE. THEN MY ATMOS KEYBOARD
COULD RESEMBLE A 'SPECCY’

5

1 1%

W

I

[T
GRiln,

tha
Wil

s

P —
ot L
Lt 3
PR] josie }

=

i
7
v

.
-
4
-
-+
P
g
'
-
-
e
-
-+
b
-+
-+ .
-+ 3
-+ a2 I
-+ A e
-+ e (=3
. P -
e 4em u
-+ L ot
e
-+ el At
-] et
=+ .l
+ Lr~ [et
i 114 i
S (=] =]]
-+ fad [=S ve | [~
+ a2 = 3
e et . w2
L d [0 nd el
“+ i oed
b - b B .1
- R - S S~
“+ a4 423)
e -t =IO - BRI 1)
e ot I I W

Lol B ed ~+ e o e 1N

temd T3 L2 -+ [Ll e S =

LS w8 -+ [~ PR Mt

B I T S ° »» - B OB S a

PAGE 14

Jonathan Bristow has a SAM COUPE - no it's not a baby buggy,it's a Miles
Gordon computer. It is 512K and comes with a 3.5" internal drive and a few
games. Jonathan wants to swap 1t for a Spectrum 128 (the one with the same
sound chip as the Oric). You can write to Jonathan direct or leave a
message for him to ring you by telephoning his parents on 0953 881212

CONTACT LIST
You will notice that I am not printing names/addresses. To find them, just

check out the contact list - less work for me- more work for vyou! - MORE
- SPACE IN QUM.

Raffle tickets for the QUM GRAND DRAW still available. See last issue for
details. Additional prizes include some special Leicester beer donated by
Graeme Burton - HIC!

T R a ae s s R b A R A S

.MESSAGE TO STEVEN FRIEND
Frank Bolton has a copy of the Gary Marshall book that you are after. Just
send him a few stamps to cover postage. Alternately buy him a raffle ticket

at the ORIC MEET.
e e o S o A s o o o o o T S B e o o S S S

ACCOMODATION

For those wishing to crash out in Aylesbury on the Friday or Saturday of
Oric Meet; I have found a cheapo Bed and Breakfast. It 1is "Homely ', 127
Tring Rd, Aylesbury. Tel: 0296 20828. Price 1is 10 pound per person per
night. Those who can’'t afford THAT can bring sleeping bags and will be
given the key to my garage! '

The postal system certainly excelled with the last 1ssue of 0OUM. All
magazines were sent out second class on a Monday afternoon. By late Tuesday
morning, Ken Austin was on the phone asking for the second hand saoftware
packs adver tised. During the day another 3 of you rang.

I will try and put together some more cheapo packs.

The Opelco twin drive system h been sold. O0Offers are being taken for = the
MICRODISC. Put in a bid to exclude the Atmos and speech thingy. GStart
around 50 pounds and let me know your limit. We will auction it at the meet.

NEW SUBSCRIBER COLIN COOK HAS A SURPRISE GIFT ON IT'S WAY TO HIM FOR
INTRODUCING ARTHUR CRAWFORD TO THE GROUP.
WELCOME ABOARD GENTLEMEN.

JUDY S5IMMS will knit anyone a Jjumper with the ORIC logo on it. For price
details please contact Judy direct.

OUM issue 59

ORIC Enthusiasts (OUM 59) 1 5

Thias month seea a temporary departure away from the uauwal format
in that I have decided to present a complete article on Geoff
Phillips' book in order to complete the program contained in it.
I will continue with other articles next time round.

ORIC ATMOS and ORIC-1 GRAPHICS & MACHINE CODE TECHNIQUES

Chapter 3 - BASIC (continued)
copyright of Geoff Phillips

3.10 Machine code advice (cont'd)
INCREMENT AND DECREMENT Important points cont'd:

3 When using INC or DEC with several bytes, zremember that
you can safely do one set of INC or DEC instructions at a time.
The following example employs such faulty logic:

INC 42

INC 42

BNE A

INC 43
A NOP

RETURN FROM INTERRUPT Remember to wuse RTI to finish an
interrupt routine. The only difference between RTI and RTS is
that with RTI the 6502 saves the processor flag on the stack.
This means that an interrupt routine need not save the processor
status register.

SUBROUTINES When the Jjump to subroutine instruction is executed,
the return address is saved on the stack. This address is saved
high byte followed by the low byte (this follows the 6502
convention of a low address being stored in the lower 1location).
This return address on the stack 1s always one less than the
real return address - the 6502 adds one to the program pointer
before executing each instruction.

SEI AND CLI On the ORIC and interrupt can occur at any time. If
you want to disable Iinterrupts (which will stop the keyboard
from being scanned and the cursor flashing) you can use the SEI
instruction. CLI (clear interrupt disable) enables the interrupts
again. Note that SEI does not stop the 6522 clocks from running,
but it does prevent interrupts £from being generated when the
clocks reach zero. SEI should be used when your program is using
the stack area in a non-standard way.

3.11 Using the ! extension command
The ! command allows you to create your own BASIC command. When
BASIC encounters the ! token it jumps to the address stored at

#2F5,6, assuming it to be a normal subroutine.

PASSING DATA PEEK and POKE provide one way to send data between
your extension subroutine and BASIC, but a better way is to put

OE/1

1 65 QUM issue 59

the . data after the ! command, - as you would do for any other
BASIC command. The pointer #ES,#EA will be identifying the byte
following the ! command as you enter your subroutine. You can

(and must) use this pointer to extract all the data -pertaining
to the command. When you exit from the subroutine #E9, #EA must be
pointing to the byte following the last byte in your command. 1In
order to look at each character, you can call subroutines at #E2
(which increments #E9,#EA) or #E8 (which does not increment

#E9, #EA). After each call the next character is passed in the
accumulator. This can be used to pass over delimiters, such as
commas.

USING THE FORMULA EVALUATION ROUTINE If you want the extension
command to work with expressions (such as X + Y) as well as
fixed-format data, you may need to call the ROM subroutine
which evaluates the expression. .This subroutine (at #CFl17 for
V1.1 ROMs or #CE8B for V1.0 ROMs) only needs the #E9,#EA pointer
to be set up. At the end of the subroutine the #E9,#EA pointer
will be correctly set to the character following your expres-
sion. Note that the expression evaluated can contain the normal
BASIC functions, e.qg. !X*¥*SQR(Y), but be warned that the sub-
routine assumes that all words have been compacted 1into tokens -
including such things as the +,-,* and / operators. As in BASIC,
expressions must be terminated with a comma, colon or #00 (i.e.
the end of a BASIC line). There are two possible types of answer
returned:

1 A string of characters. The information about this string
is stored in an area of menmory pointed to by the address #D3,

#D4. 1In this temporary area there are three bytes: length (one
byte) and address of string (two bytes). When the formula results
in a string, location #28 is set to #FF. Once you have finished

with the string, you must release the temporary area it used by
calling #D7CD (V1.1) or #D712 (V1.0).

2 A floating-point number. This number is stored in the
floatlng point accumulator (see Chapter 6). Location #28 is set
to zero to indicate a numeric result. If you want to convert the
number into a signed 2-byte integer, you can simply call #D92C
(V1.1) or #D871 (V1.0). This will return Y as the low byte and A
as the high byte. For an example of using ! see Chapter 4.

3.12 Using the & extension functlon routine

Whereas ! can only be passed data, the & function not only
expects data to be passed but also returns a value. The &
facility assumes that #2FC,#2FD points to the machine code
routine.

PASSING DATA There are two types of data that can be passed - a
string of characters or a number. 1In both cases, & must have an
argument following, surrounded by parenthesis. For example,
&(AS), &(4.345). The formula evaluation takes place automatically
on the argument, and the results are exactly the same as
described 1in section 3.11. When a number is passed, you can
either take it or leave it, but a string requires extra action.
If your subroutine has been passed a string, you must call
subroutine #D8AC (V1.1l) or #D7F1 (V1.0) in order to free up the
temporary string space. This will also extract the necessary
information, storing the 1length in the accumulator and the

OE/2

| | /\ ? OUM issue 59
address of the string in #91,#92. '
RETURNING DATA Returning data will usually be the final thing
that the subroutine does. Location #28 should be set.to zero if

you are returning a number, or ¥FF if the result is a string. To
return a number you simply leave that number in the floating-.
point accumulator at #D0 to #D5 - see Chapter 6. Returning a
string is a 1little more complicated, since you must first
allocate an area for it. This is done by putting the length (in.
bytes) into the accumulator and calling #D5AB (V1.l) or #D4F0

(V1.0). This will 1leave the address of the new string at
#D1,#D2. Once you have put the string at this address, you must

~finish the subroutine with either of these:

PLA o PLA
PLA PLA
JMP #D5F4 (V1.1) JMP #D539 (V1.0)

When returning a floating-point number, you exit with the -usual
RTS instruction. .

EXAMPLE: THE INSTR FUNCTION On some computers you will f£ind the
'INSTR' function. This searches for a string of characters
within another string, returning its position, 1if found. For
example, INSTR("ABCD","BC",1) 1is 2 (the 1last parameter, 1,
indicates the start position of the search). The subroutine of
Program 3.2 simulates the INSTR function. The function is called
by a statement such as: A=&("T$,S8,N"). String S8$ is searched
for within string T$, starting at position N. The quotes are
used since & can only take one parameter; this means that you
can only use simple variables (such as A$) in the actual
statement. '

The 1listing will work unchanged for V1.1l owners, but users of
V1.0 ROMs should make the following adjustments:

9800: JSR $D7F1

981D: JSR $CES8B

982D: JSR $CESB

983D: JSR $CE8B

9840: JSR $D871

~ 987B: JSR $D3ED

To use INSTR, you must first type DOKE#2FC,#9800.

9800: 20 AC D8 JSR $DTF1 981D: 20 17 CF JSR S$CF17

9803: A0 09 LDY #$09 9820: A0 02 LDY #$02
9805: B9 33 00 LDA $0033,Y 9822: Bl D3 LDA ($D3),Y
9808: 48 PHA 9824: 99 35 00 STA $0035,Y
9809: 88 DEY 9827: 88 DEY

980A: 10 F9 BPL $9805 9828: 10 F8 BPL $9822
980C: A5 E9 LDA $E9 982A: 20 E2 00 JSR $00ER2
980E: 48 PHA 982D: 20 17 CF JSR $CF17
980F: A5 EA LDA $EA 9830: A0 02 LDY #502
9811: 48 PHA 9832: Bl D3 LDA ($D3),Y
9812: A0 01 LDY #$01 9834: 99 38 00 STA $0038,Y
9814: Bl D3 LDA ($D3),Y 9837: 88 DEY |
9816: 85 E9 . STA $E9 9838: 10 F8 BPL $9832
9818: C8 INY 983A: 20 E2 00 JSR $00E2
9819: Bl D3 LDA ($D3),Y 983D: 20 17 CF JSR $CF17
981B: 85 EA STA $EA 9840: 20 2C D9 JSR $D92C

OE/3

'_ /I EB OUM issue 59

9843: 38 SEC 986A: C5 38 CMP $38°
9844: A5 35 LDA $35 986C: DO EC BNE $985A
9846: E5 38 SBC £38 " 986E: A4 33 LDY $33
9848: 86 35 STA $35 9870: C8 INY :
984A: E6 35 INC $35 9871: DO 06 BNE $9879
984C: Cé6 33 DEC $33 9873: E6 33 INC $33
984E: A5 33 LDA §$33 9875: DO D7 BNE $984E
9850: 85 3B STA $3B 9877: A0 00 LDY #$00
9852: C5 35 - CMP $35 98739: A9 00 LDA #$00
9854: BO 21 BCS $9877 987B: 20 99 D4 JSR $D499
9856: A9 00 LDA #500 987E: 68 PLA

9858: 85 3C STA §$3C 987F: 85 EA . STA $EA
985A: A4 3B LDY $3B 9881: 68 PLA

985C: Bl 36 - LDA ($36),Y 9882: 85 E9 STA SE9
985E: A4 3C LDY $3C 9884: A0 09 LDY #$09
9860: D1 39 CMP ($39),Y 9886: 68 PLA

9862: DO OF BNE $9873 9887: 99 33 00 STA $0033,Y
9864: E6 3B INC $3B 988A: 88 - DEY

9866: E6 3C INC $3C 988B: 10 F9 BPL $9886
9868: A5 3C LDA $3C 988D: 60 ' RTS

Program 3.2 INSTR

3.13 A real-time clock Program 3.3 is a short program to give
your programs a clock that can return the current time of day.
The 1listing will work unchanged for V1.1l owners, but users of
V1.0 ROMs should make the following adjustments:

46B: STA $230,X
To start the clock, CALL#45C.

0410: 48 PHA 0443: 69 01 ADC #3501
0411: 18 ~ CLC 0445: 8D 07 G2 STA $02C7
0412: F8 SED 0448: C9 18 CMP #$18
0413: AD C4 02 LDA $02C4 044A: DO OE BNE $045A
0416: 69 01 ADC #$01 044C: A9 00 LDA #500
0418: 8D C4 02 STA $02C4 044E: 8D C7 02 STA $02C7
041B: D8 CLD 0451: 18 , CLC

041C: AD C5 02 LDA $02C5 0452: AD C8 02 LDA $02C8
041F: 69 00 ADC #$00 0455: 69 01 ADC #$501
0421: 8D C5 02 STA $02C5 0457: 8D C8 02 STA $02C8
0424: C9 3C CMP #$3C 045A: 68 PLA

0426: DO 32 BNE $045A 045B: 40 RTI"

0428: A9 00 LDA #$500 045C: A2 04 LDX #504
042A: 8D C5 02 STA $02C5 045E: A9 00 LDA #3500
042D: 18 CLC 0460: 9D C4 02 STA $02C4,X
042E: AD C6 02 LDA $02Cé6 0463: CA DEX

0431: 69 01 ADC #$01 0464: 10 FA BPL $0460
0433: 8D C6 02 BSTA $02C6 0466: A2 02 LDX #502
0436: C9 3C CMP #$3C 0468: BD 72 04 LDA $0472,X
0438: DO 20 BNE $045A 046B: SD 4A 02 STA $24A,X
043A: A9 00 LDA #$00 046E: CA DEX

043C: 8D C6 02 S8TA $02C6 046F: 10 F7 BPL 50468
043F: 18 CLC 0471: 60 RTS

0440: AD C7 02 LDA $02C7 0472: 4C 10 04 JMP $0410
Program 3.3 Clock

The time can be set up (and read back) using PEEK and POKE from
the following locations:

#2C5 seconds

OE/4

Location
but this

ACCURACY

certain commands are used.
when doing any tape saving or loading.
during any sound command and when

happen

QUM issue 59

#2C6 minutes
$2C7 hours
days

#2C8

#2C4 is used to store one-hundredth second ihtervals

is not in 'a suitable form for reading.

fairly accurate, except when
most serious problems will arise
A minor loss of time can
scrolling occurs, on

clock will stay
The

The

V1.0 machines.

Hext time, the end of Chapter 1 with the Relocator proqram.

SOF TINDE X

c
2
A
H

Disk Ho & Status:

upplier:
25 ANTICS BELOOR/ATC BARE
40 ATTACK OF THE LYRERMEN Ml TRIGTC I GAME
b ACHERONS RAGE CEL OR/TE OME —
9 ATTACK OF THE CYBERMEM CB1 OR/AT C 4 '
139 A VIEW TO & KILL CIl O0R/AT L
140 & VIEN T0 & £ILL it OR/AT C
178 ANTICRACK A2 OR/AT
180 AFRICA BAZ OR/AT
293 ALTAI . LISTING CHE ATROS C 0 1
236 ATLAN SERITES CRE OR/AT :
253 ACCOUNTS/CALL SOFTBACKS CHI ATMOS 1
27 ARRAYSORT LISTING Al OR/AT
381 ANARI LISTING 1t GR/AT ©

MUS

BRT OF FALLING AP
TORMENT AHD TORER
STORIES OF JOHNNY
HOTHER FIST AND H
SINBLES 1964-1987
JRCAUES

ENCHANTED
$TRLONEEE

$ToLou21E

v
i
T
¥
T
fi
4
i

— w -

e v |
D ded

i g T 3 e et

ag
!;'
{is

STograd,

B
7
[1Rg
;
zpert o
Fx

nected.

®d 103 Con

Tél

3
=
et
e .
Lt _m
[o}
[EN) " .
[
b m“
ad 1 b
P w
v
w3
o n
L “ !
e o
il =
tad 1
[}

1
+

1
1
i
t
'
H
[l
1
1
1
1
I

1z 7
N

5

; o D3 S . PR Wy
i P I = W - W] Eronomom

dual-interfare availa

anp

-
b

RE AS

i

{7
LATTER.

A
HY

1

Huak

s

[o
Ll
Jom 1
[|
!]
[Sy H
jonst N |
L
[|
[
" Che

it

fios)

t
I
' |
: 1
i
| H .
1 -
1 -
i 1 LA | I
] ol -
v [& -
! 1ot i -
' 1 31 (=" -
1 e M
A i ZED Ot J
1 [
ooz [
. "] “ [
£
- W [ez b
]] Lad i e
Vopen - - oy
[e -) e
1 L 1oL
R T 2 3

