FASTER HIGH-RESOLUTION GRAPHICS
7.1 Objectives

Chapter 6 dealt with the subject of high-resolution graphics when using the routines contained in the ROM. This chapter will present you with a much faster set of routines to be incorporated into your own programs. Depending on what your program is doing, you could just use one or more of the subroutines, or just make use of the concepts involved.
These special subroutines occupy RAM between #1200 and #17FF, with other extensions and examples put elsewhere. The relocating program in Chapter 4 can be used to move the high-resolution routines to a place suited to your needs.
Here is a summary of the high-resolution routines, to whet your appetite!
1. Plot character cell. This is an extremely fast routine for putting a character cell on the screen.
2. Test routines to look for collisions between a character cell and other objects.
3. A fast equivalent to CURSET and POINT.
4. An easy-to-use routine for drawing larger, odd-shaped objects, with colours.
5. A colouring facility for the character plot routine.
6. A paint facility to fill in irregular shapes. This can be used from within BASIC.
7.	A compactor routine for the high-resolution screen. This makes it possible to store a picture in a compressed form.

7.2	The theory behind the fast plotting routine

THE USE OF TABLES
The normal way of plotting points on the screen involves two things:
1.	Finding the correct address for a given X, Y position.
2.	Determining the bit position within the byte at that address.

When you are plotting a whole 6 by 8 character, you would then usually shift that character a number of times, depending on the bit position. If you are just dealing with one pixel, you use the bit position (as a number 0 to 5) in order to reference a table containing the numbers: #20, #10, #8, #4, #2, and #1. One of these numbers is then either ANDed or ORed with the contents of the address in order to set, clear, or test the bit.
The usual way of calculating all this information is to:
1. Multiply the Y co-ordinate by 40 and add #A000.
2. Add this to the X co-ordinate divided by 6, to give the address of the pixel.
3.	Use the remainder from this last division to give the bit position.
What really slows up this procedure is the division by 6. Division by 4 or 8 can be done with the use of simple shifts right, but in order to divide by 6 you must use a rather cumbersome divide routine. Multiplying by 40 is also a difficult task in machine code.
The method used here gives an increased speed of about 10 times in comparison to using the ROM routines. When compared with using BASIC, the acceleration is seventy-fold!
The secret is that a 1K table is generated and used, and this provides all the addresses and bit positions very rapidly. This table sits at 1400 to 17FF (but is easily relocated) and is made up of four 256-byte tables, as follows:
1.	The high value of the address at the start of every HIRES line.
2.	The low value of this address.
3.	The number of character cell positions across the line, for each possible value of X.
4.	The bit position within the byte for each possible value of X, multiplied by 16. (This will be explained shortly.)

It can be seen that given a particular (X, Y) coordinate, the correct address can be quickly located.
If you want to draw a character at a given point (the top left position of the character) you will then have to shift each line of that character a number of times – as given by part four of the table. Since this is rather long-winded, we save time by shifting the character from one to five times and saving all the possibilities in a table (#60 bytes long). The location of this table is supplied by the calling program, since there could be any number of these character tables. These short tables are organized as 6 sets of 16 bytes – one per number of shifts required. Each of these consists of two sets of 8 bytes, corresponding to the patterns that make up the character you are plotting. You need 2 bytes since the character, when shifted, falls between one character cell and the next. Most of the routines in this chapter will rely on the 1K table, but apart from that there are three different types of graphics, as follows:
1.	Graphics routines that draw a previously analysed character.
2.	Graphics routines that draw a shape that is not in the form of character cells, e.g., 12 dots across by 4 dots down.
3.	Graphics routines to handle individual pixels, for use in routines like PAINT.

DRAWING AN ANALYSED CHARACTER
Once you have worked out all the possible shifted values of a character, it is quite simple to display that character, since the last part of the 1K table gives the offset into the #60 byte table (which is why the values were multiplied by 16 beforehand).
In order to display a character, and subsequently remove it, you only need to use the one routine, employing the exclusive-OR function.
In other words, if you exclusive-OR the letter ‘A’ onto a blank screen, the ‘A’ will appear, until you re-do the exclusive-OR, when the ‘A’ disappears. This saves having separate routines to draw and remove a character.
The added advantage is that if you exclusive-OR on top of an existing pattern, you keep that pattern intact after the second time you call the routine.
One disadvantage is that you must be careful not to exclusive-OR over the top of an attribute or the screen could go haywire!
�
�
Program 7.1 is the first part of our graphics routines, which sets up the tables.
Following the table set-up subroutine, which you call once, we have the routine (Program 7.2) you call for each character which you will want to display eventually.
To call this routine, you must set up the X register to the appropriate ASCII value, A to the low part of a spare #60 byte address, and the Y register to the high value of this #60 byte table. The routine uses the normal character set area at #9800, though you may choose to alter this to the alternate area at #9C00.
�
�

The subroutine of Program 7.3 is called by the character drawing and testing routines, and calculates the address of an X, Y co-ordinate.

�

And now to the subroutine which you call when you want to display something (Program 7.4).
The routine exclusive-Ors the character stored in the table pointed to by the A and Y registers onto the screen at the X, Y co-ordinate given by addresses 8A and 8B respectively. Register A is the low part of the table’s address and register Y is the high value. For example:
LDA #45	X co-ordinate
STA $8A
LDA #60 Y co-ordinate
STA $8B
LDA #40 F40 is address of the table.
LDY #0F

�
�
7.3 Collisions
The last routine can be used to put a character on and take a character off the screen, but one important facility is to be able to test for collisions – in games, etc.
There are two main cases to consider:
1. When an object is prohibited from running into other objects, including any screen border.
2. When an object is being shot at, by some other moving character that is using exclusive-OR, and it is possible that a given character has been ‘destroyed’. An example of this is where a laser base is destroyed by a rain of missiles.
In the first case, we need a routine that looks at a given area, and if there is room for your character, it returns with the zero flag set. The second subroutine examines the area where your character was last seen, and returns the zero flag set if your character is still in one piece.
The timings for calling these two routines are quite different:
1. The first routine is looking for a clear area, so call it before drawing on the character.
2. The second routine must be called after all screen objects have been moved and drawn. The assumption here is that after one character has been drawn, another may overlap it and thus wipe part of it out.
To call either of these routines you must set up the A and Y registers, as in the previous subroutine, with 8A and 8B containing the X and Y positions of the character on the screen.

�

The first subroutine is given in Program 7.5.

The second routine,
which test
s to see if a character is a whole is listed in 7.6

�

7.4 Fast single-point plotter

This short routine (Program 7.7) uses the 1K table set up at 1400 to 17FF to provide an extremely fast method of dealing with individual pixels. It takes registers X and Y which give the
co-ordinates
 and returns an address at #82 and a bit position in the accumulator. This bit position is in the form of one bit set in the byte – ready to be ORed with the contents of the address.

�

�

T
his subroutine also uses a short table of the bit positions at 139E:

139E: 20 10 08 04 02 01

The next subroutines (Programs 7.8 to 7.11) use a fast plotting routine, as follows:
1. Set (OR) a dot – #137E.
2. Remove (AND after inverting) a dot – 01386.
3. Alter dot (exclusive-OR) – #1390.
4. Test dot – return the zero flag set if dot is clear – #1398.

To call any of these subroutines, you only need to set registers X and Y to the correct horizontal and vertical values.

�

�

�

�

COLOURING THE SCREEN

For the fastest possible graphics, it is advisable to colour the screen with preset paper and ink attributes to the left of your graphics area. If it is important to colour a character, then the following routines in Program 7.12 can be used.
For each character you need a 16-byte area, half filled with the attribute for each of the eight lines. The remaining 8 bytes are used to store the contents of the screen before it is overwritten. Normally you will store a set of INK colours (i.e., numbers between 0 and 7), but remember that it is possible to specify a PAPER colour, or perhaps even a flashing attribute.
The routine is called with X and Y registers set to the screen position (top left) where the colours are to be stored. Also, #
8
C, #
8
D
should be set to the address of
the 16-byte area that is being used for this character.

�

�

Having drawn the colours, and perhaps worked out a new position for the character, you must remove the attributes, restoring the screen to its former glory.

�

This is done by the subroutine at #11B2, listed in Program 7.13.
If you intend to colour moving objects by using these two subroutines, follow this order of events:

1
. Draw all the objects, using the exclusive-OR character facility provided.

2. Fill in the colour attributes, where required.
3. Delay as necessary, and work out new positions of objects, etc.
4. Remove colours, restoring parts of the screen.
5. Use exclusive-OR at the old positions to remove objects.

This sequence is important because you may get into trouble usin
g exclusive-OR over attributes,

s
ince the attributes may be altered to one of the ‘nasty’ control codes and cause the picture to break up.

7.6 Drawing larger shapes

Although the character drawing subroutines are quite fast, it can be quite awkward to have to
work out g
raphics in terms of 6 by 8 character cells. The following routine (Program 7.14), though still using the special graphics table, moves away from using character cells, and lets you draw an irregular shape, complete with colour.

All you have to do is provide the subroutine with the address of your object, plus details of its height (in pixels) and width (in character cells).

You must set up this information as follows:
1. Store the graphics shape in a fre
e area of memory. The area must
be pointed to by #8C, #8D.

2. A second free area is required, equal i
n size to the first, pointed to
by #80, #81.

3. The data for the object must be stored line by line, with 1 byte for
each 6 pixels, or an attribute, and the number of bytes across
should be stored at #8E.
4. The number of lines down is required at location 8F.

Finally, you must load up the X
 and Y registers with the appro
priate screen position (top left of the object).

With the parameters stored in exactly the same way, you call the

routine at #1
15E in order to
r
emove your artwork (Program 7.15).

�

�

�

�

The method used to show graphics in these last two routines is s
imply to overwrite parts of the s
creen, and not use exclusive-OR. This will occasionally be more convenient, since you will then not have to worry about drawing over the top of other attributes. However, I have not provided any method
o
f detecting collisions when using this method.

7.7	Examples

EXAMPLE 1 – A DEMONSTRATION OF THE CHARACTER DRAW FACILITY

This first example is based on the character cell type of graphics. It moves a multicoloured square of AB and CD back and forth.
Of course, if you modified the character definitions for A to D, then you would see some other graphics pattern crossing the
 screen.

�

�

�

This program (7.16) assumes that BRK will return you to whatev
er machine code monitor you are
u
sing. You should change this to RTS (instruction code #60) if you are just using BASIC. Please note that these routines assume that you are already in HIRES mode – if you are in a machine code routine, call subroutine #E9BB (or V1.1 ROM
#
EC33) in order to enter HIRES. The call to get back into TEXT mode is #E9A9 (#EC21 Vl. 1 ROM). To run the program call #D00.

The colours for Example 1 are as follows:

F80: 1 1 1 1 2 2 2 2

F90: 6 6 6 6 3 3 3 3

EXAMPLE 2 – USING THE NON-CHARACTER GRAPHICS ROUTINES

�

�

Program 7.17 Example 2 (02000 – #2039 and #20CO –
#
20E2)

This example (Program 7.17) demonstrates how easy it is to move any shape around, using the second drawing method. The flickering is due to the constant drawing and clearing of the object. One way round this would be to leave the object on the screen and not clear it off. Providing that your object has been defined with at least one blank pixel on all sides, you will automatically wipe out the previous creation when moving in any direction. Of course, this will clear

anything that your object crosses, but the graphics animation is smoother and twice as fast as before.
The shape for Example 2 in the area #2040 to #206C is as follows:

7.8	PAINT subroutines

I wonder if you thought that the FILL command would paint an area of the screen when you first bought your Oric! Unfortunately there is no easy way to shade in anything more complicated than a rectangle, so here is the highlight of the graphics routines, a super-fast PAINT subroutine.

THEORY

The paint facility here uses the 1K graphics table, created by calling 1200, and the set and test dot subroutines at 137E and 1398. However, so that the routine can be called from BASIC, the subroutine has been designed to do all necessary calls, and saves all zero page locations that it overwrites.
The theory behind a PAINT subroutine assumes that the shape is completely enclosed and that a starting point is supplied somewhere inside. The general approach is to move away from this starting point, going in all directions in turn. From each new point that is not yet filled, another set of directions is remembered, and in this way the whole shape is eventually painted.
To ‘remember’ each point that needs painting, a stack is used, so that we explore all avenues until a complete dead-end is reached and then back-track through all other possibilities – like you might do when mapping a maze.
The problem with this is that you have only a limited stack to use. In order for PAINT to work within this constraint, it must constantly prune unwanted values off the stack. Even so, this PAINT routine is probably the fastest you will ever see on the Oric.
Rather than try to explain in detail how the machine code routine works., Program 7.18 is a BASIC equivalent to the PAINT subroutine listed below in Program 7.19.

�

This program runs very slowly because, for every point plotted, the routine must look in the four surrounding positions. Here is a summary of what is happening:
1.	The flag RF (right flag) is set to true whenever it is possible to move either left or right.
2.	The flags UF and DF (up and down flags) are set to the state of the pixels above and below the current dot position. Before doing this, the subroutine looks for an empty pixel above or below, and if the up or down flag is set as well, that position is put on the stack as a point to investigate. These flags are used in order to stop the stack from being saturated with unnecessary values. Since all dots along a line are investigated, it is not necessary to look at all the dots above and below, since any one of them will scan its own horizontal brothers.
3.	As each point is set, the stack is examined for any outstanding references to that point, and these are removed.

Program 7.19 gives the listing of the machine code PAINT subroutine.

�

�

�

�

USING THE PAINT FACILITY

The routine is called at #1000 after setting X (at #0) and Y (at #1) to a point inside the shape.
It assumes that high-resolution mode has been selected, though of course this is not of importance to the program itself, since it is simpl
y processing an area of memory.

PAINT is great fun to watch!

7.9 High-resolution compactor subroutine

When displaying a high-resolution screen, you would normally need nearly 8K of RAM. This may strike you as being wasteful, especially when most of the time you are just looking at blank or filled areas.

Below is a routine that compacts a high-resolution screen (or any other data) into anything from 1K to 8K, according to the complexity of the picture. You do not have to save the whole of the screen in any case, so this routine can be used with the split-screen facility discussed in Chapter 6.
The compactor and the companion expander routine do not use any of the other subroutines in this chapter, so can be used on their own. One obvious use is the creation of front pages when loading a program: instead of loading a complete 8K picture, you only need to load maybe 3 or 4K.

COM
P
A
C
TOR CON
SIDE
RATIONS

These routines make two assumptions:

1. The value #
0
F is not used. (It has no meaning in HIRES mode anyway.)

2. Most of the screen contains characters with an ASCII value between 0 and 127. The routine does cope with the occasional ‘inverse’ byte, though with less efficiency than ‘normal’ characters.

USING THE COMPACTOR

You need to set up start and end addresses as follows:
1. The start address of the area to be condensed should be entered at

#82, #88.

2. The end address of this area should be stored at #84, #85.

3. The start address of the resultant data must be stored at

#86, #87.

After using the compactor subroutine, the highest address of the compacted data is left at #88, #89.
The compactor subroutine is intended for use within a machine code program. If you wish to use it from BASIC you will have to save locations #80 to #8F in th
e same way as the PAINT routine

does.

The expander routine, which reverses the compacting process, uses the same addresses, but does not need the end address (#82) to be specified.

�

�

�

Program 7.20 gives the compactor subroutine, which starts at
 #C00

Finally, Program 7.21 gives the expander routine, at #C75.

�

�

7.10 Conclusions

It is not intended that you use all of these routines every time that you want to do some high-resolution graphics – indeed the ROM routines may prove to be fast enough for your needs. It may well be, though, that you require several of the routines for a game involving fast-moving graphics, and these could be relocated into a spare memory address using the relocater program in Chapter 3.
Even if you do not want to use the movement routines, the paint facility is invaluable in BASIC, though once again you may need to relocate it to a higher address if you have a 48K machine.
The use of tables to speed up graphics should be remembered for other applications where memory can be sacrificed in return for a faster response.
The compactor routine can certainly be improved upon. It depends largely on the picture being stored, but you may find it better to scan vertically rather than horizontally. A completely different approach would be to analyse the screen in terms of pixels, keeping a count of the number of dots alternately set or clear.

Additional note (August 1998)

A lot of water has passed under the bridge since th
is was written,15 years of programming, including much games programming on other machines has taught me that s
ome of the methods in this chapter aren
’t quite optimal. At the time,
I

clearly had only a passing kno
wledge of TV
’s workings, i.e. raster and flybacks.
I

don
’t think
I

would really use XOR these days, far better to
restore previous sprite,
save background,
draw sprite. Having said that,
I

still come across the
 XOR trick, for instance in a C++ MFC book, which suggested its use for drawing
 lines and boxes. As for the
suggestion that
multiplying
by 40
 is hard, well in fact it
’s just a
 a few shifts and adds.
�

