6 MATHS, HIRES, AND MUSIC

6.1 Introduction

This chapter is concerned with the ROM subroutines which deal with arithmetic calculations, high-resolution graphics, and the sound facilities.

These three subjects have been grouped together because the ROM subroutines are all quite complex and their use can save a lot of programming work and memory space.

6.2 Maths

If a machine code program needs to do any arithmetic (such as multiplication or division), it will normally require a specially written set of subroutines. With the exception of single-byte add and subtract, the 6502 cannot directly do any arithmetic.

The BASIC interpreter contains a large number of useful subroutines to handle all of its mathematics. Often a few subroutine calls can save you hundreds of bytes of memory. It must be pointed out, though, that calling such subroutines is a little risky. Should an error arise (such as a division by zero error) you will be rudely dumped back to BASIC. Also, you may find that the routines are not fast enough for your needs – especially functions like TAN and LOG.

The maths routines make good use of page 0 – see Chapter 5.

FLOATING POINT

All calculations are done in ‘floating point’, In BASIC, numbers can be stored in either a floating-point variable (e.g., B) or an integer variable (e.g., C%). A variable such as B can contain any number up to an accuracy of nine digits, with a decimal point that ‘floats’ up and down the number. An integer variable can only contain a number between – 32768 and +32767, without a decimal point. Although in theory this would seem to be faster to process, the ROM can only manipulate numbers in floating-point form, so converts any integers that are used.

When floating-point numbers are stored in memory (e.g., for variables and array elements), they occupy 5 bytes of memory. This is made up as follows:

Byte 1: the exponent of the number.

Bytes 2 to 5: the mantissa of the number (most significant bit to least significant bit).

The number is translated into binary, and then the decimal point altered so that it is to the left of the most significant digit (which in binary is always going to be 1). The exponent represents the number of decimal places that the decimal point has been moved, so if the mantissa is M and the exponent is E, then the value of the number is O.M. * 2” E.

There are three considerations:

1.
When the exponent is positive (meaning that the number is 1 or greater), the exponent will be #80 upwards. When the exponent is negative (meaning that the number is 0 – 0.99999) the exponent is subtracted from
#
80.

For example, an exponent of –
 4 is #7C; an exponent of +4 is
#84.

2.

Since the leftmost bit of the mantissa is always going to be 1, this bit is assumed and replaced with a bit that represents the sign of the number (0 is positive, 1 negative).

3.

When the number is zero the exponent is set to #00.

This can be quite difficult to follow, so here are a few examples of how numbers are stored. Do not worry if you do not understand floating point fully – it does not prevent you from using the subroutines!

EXAMPLES OF FLOATING POINT

1.
+4
 is
 Exponent: #83 Mantissa #00 #00 #00 #00. The most significant bit has been replaced by the positive sign. The exponent is #83 because the number 100.0 is stored as 0.1.

2.

–
6
 is
 Exponent: #83 Mantissa #CO #00 #00 #00. In this case, the lost bit at the front of the number has been replaced with ‘1’ because the mantissa is negative.

INTERNAL FLOATING-POINT NUMBERS

All calculations involve two operands, and since intermediate numbers need to be stored somewhere. there exist two floating-point accumulators. These are similar in format to the floating-point numbers stored in memory, except that the sign of the mantissa does not overwrite the highest bit in the mantissa. To save

time, the sign is stored as a sixth byte, with its top bit cleared for positive numbers and set for negative numbers.

A mantissa of zero is still represented by a zero exponent.

The two accumulators are known as ACC1 and ACC2 in the remainder of this chapter. Unless stated to the contrary, ACC1 is used to receive the result of any calculation, with the exception of some of the transfer commands. As discussed in Chapters 3 and 4, ACC1 is used by the extension commands

! and & when passing numeric data, as well as in the formula evaluation subroutine.

LOCATION OF NUMBERS

ACC1 is stored between
#
DO and #D5, as described above. ACC2 follows ACC1 at #D8 to #DD.

When a floating-point number is turned into a string of ASCII characters, this string is always stored between #100 and
#
10F. The reverse procedure, however, uses the pointer #E9,

#EA to indicate the start address. Remember also that version 1.0 ROMs have a bug that puts the attribute 02 (instead of
#
20) at the front of the number.

When the routines refer to a number in memory, two of the 6502 registers are used to point to the start of this area.

ROM ROUTINES FOR MATHS

As usual, version 1.0 ROM addresses are given first, followed by the equivalent version 1.1 address in brackets.

Movement of data

Convert integer in Y(low) and A(high) to ACC1. #
D
3
ED (#D499).

Convert ACC1 to integer in Y (low) and A (high). #D871 (#D92C).

Move from memory location A (low), Y (high) to ACC2. #DD4D (#DD51).

Move from memory location A (low), Y (high) to ACC1. #DE73 (#DE77).

Move ACC1 to memory location X (low), Y (high). #DEA
5
 (#DEAD).

Move ACC2 to ACC1. #DECD (
#
DED5).

Move ACC1 to ACC2. #DEDD (#
DEE5).

Input ACC1 from an ASCII string (as in the VAL function). You must call subroutine
#
E8 first, then call
#
DFCF (#DFE7). The string should be terminated by a comma, colon, or
#
00.

Output ACC1 into an ASCII string, as in the STR$ function (the string is stored at #10
0 upwards, ending with #00). #E0
D1

(#EOD5).

Arithmetic

Add a half to ACC1. #DA79 (#DB04).

Calculate a number in memory (A low, Y high) minus ACC1. #DA80 (#DBOB).

Add a number in memory (A low, Y high) to ACC1.
#
DA97 (#DB22).

Multiply a number in memory (A low, Y high) by ACC1. #DCB7 (#DCED).

Multiply ACC1 by ten.
#DDA3
 (#DDA7).

Divide ACC1 by ten. #DDBF (#DDC3).

Divide a number in memory by ACC1.
#DDE0
 (#DDE4).

Divide ACC2 by ACC1.
#
DDE5 (#DDE9).

Raise ACC2 to the power of a number in memory. #E231 (#E235).

Multiply by – l. #E26D (
#E271).

Mathematical functions – as used in BASIC

LOG
�
(ACC1)
�
#DC79
�
#DCAF
�
�
SGN
�
(ACC1)
�
#DF12
�
#DF21
�
�
ABS
�
(ACC1)
�
#DF31
�
#DF49
�
�
INT
�
(ACC1)
�
#DFA5
�
#DFBD
�
�
SQR
�
(ACC1)
�
#E22A
�
#E22E
�
�
RND
�
(ACC1)
�
#E34B
�
#E34F
�
�
COS
�
(ACC1)
�
#E387
�
#E38B
�
�
SIN
�
(ACC1)
�
#E38E
�
#E392
�
�
TAN
�
(ACC1)
�
#E3D7
�
#E3DB
�
�
ATN
�
(ACC1)
�
#E43B
�
#E
43
F
�
�

6.3 High-resolution graphics

HOW HIRES WORKS

The switch from TEXT to HIRES mode is often assumed to be a fixed procedure. In fact it is possible to mix HIRES and TEXT in combinations other than the usual 200 by 240 pixels followed by three low-resolution lines.

The standard HIRES effect is obtained by clearing d
own the area of memory between #A000
and #BF3F and writing a special attribute – #1E to the last text screen position. All the other processes, such as copying the character sets and spacing out the text lines, are just cosmetic.

The way of mixing HIRES and TEXT is a little complicated and can be best thought of as a third graphics mode – SEMI-HIRES. This third mode can be entered while in TEXT mode, but to BASIC, you remain in TEXT mode. Because of this, the bottom half of the screen cannot be used for the HIRES area, since this would then overwrite the character sets and conflict with the text screen.

What happens in SEMI-HIRES mode is that when a code of #1E is found in the text area, the VDU switches the rest of the screen into HIRES mode, using the HIRES memory. This
 continues until the attribute #
lA is encountered in the HIRES memory. Figure 6.1 explains how each character square shown on the screen relates to two different addresses. For instance, the top left character cell is either #BB80 on the text screen or #A000 on the high-resolution screen.

In SEMI-HIRES mode, you will normally only use up to
#B3
FF for the high-resolution part; anything below that should be in TEXT mode. If you do go below that, you will wipe out part of the character sets and therefore not be able to display characters on any text areas. In the proper HIRES mode, it does not matter that we overwrite the character sets, since we are only presenting text on the bottom three lines. The last three lines on a screen that is in HIRES mode always use the copied character set at #9800 to #9FFF – this does not apply in SEMI-HIRES mode.

MIXING HIRES AND TEXT

Looking at Fig. 6.1, you will see that on the left side are the addresses which relate to the HIRES screen and on the right are addresses which relate to the text screen. It is important to think in terms of character cells when considering what will happen to the screen. To change part of the screen into HIRES, you only need the one character position to contain the special attribute –
#
1E. However, when switching back to TEXT, you should remember that there are eight lines which are now in HIRES. If you only switch one line back to TEXT, then the following lines in that character cell will still be in HIRES – only the rest of that one line will have been altered back in to TEXT mode. Therefore, to switch the rest of the screen to TEXT, you need to have that TEXT attribute on the last line of the eight which correspond to a particular character cell. If you want to change modes in the middle of a line, you will need one TEXT attribute placed after each of the high-resolution lines. Do not worry if you cannot follow this – the examples will clarify the issue.

For instance, if we wish the top eight lines of the screen (where CAPS is displayed) to be in HIRES mode, we POKE
#
BB80,30 and POKE #A13F,26. Now you will find that the text area
#
BB80 to

#BBA7 has been replaced by a HIRES area (#A000 to #A13F). There are two important points to note:

1. The very first location in the high-resolution area (in our last example this is
#
A000) cannot be used.

2. The last location must be left alone, since it is responsible for switching back into TEXT mode.

In BASIC, the system will still think that it is in TEXT mode – little does it know what you have done to its screen!

This means that it will give you a ‘DISP TYPE MISMATCH ERROR’ if you try any graphics commands. This is easily overcome by ORing location #2CO with 1. Obviously you should be careful that the HIRES area #A000 to #A13F is not being used by BASIC – a HIMEM #9FFF will do the trick! After this, you will be able to use all the HIRES commands as normal. Unless you have previously entered HIRES mode properly, the cursor position and PATTERN register will be undefined.

Remember not to draw over the bottom part of the screen!

The SEMI-HIRES mode has the advantage of letting you
 have a screen composed of half
text and half graphics. In addition you will recover at least 2K of memory space (#9800 to #9FFF).

To create such a set-up, you would:

1. POKE #BB80,30 (switch to HIRES).

2. POKE #B3FF,26 (end of HIRES area). Note that
#
B3FF is the address of the lowest line within the required character block.

3. POKE #2CO,PEEK(#2CO)

OR

1 (to allow HIRES commands).

4. For version 1.0: POKE#26F,12:DOKE
#
26D,#BDD8;

for version 1.1: POKE #27E,12: DOKE #27A, #BE00: DOKE #278, #BE28: DOKE #27C,440.

These POKEs and DOKEs make sure that only the bottom half of the screen scrolls.

5. Clear the screen.

It is advisable to do all these commands in one go. You will notice that the HIRES screen contains vertical lines. This can be cleared by using the FILL command (filling the screen with
#
40). Alternatively, if you do a HIRES command beforehand, this will not be necessary.

When using this HIRES area, remember to leave location #B3FF well alone! Your first HIRES commands should set the pattern and cursor positions.

MIXING HIRES AND TEXT ON ONE LINE

Here is something quite remarkable! Type the following as a one line command:

FOR K=OT07:J=K*40

POKE #A022+ J,K+1:

POKE #A023+ J,26: NEXT:

POKE #BBA1,30

The CAPS sign should burst into colour!

In this way, part of a text line can be switched to HIRES, and back again, and the attributes in that HIRES area affect the rest of the text on that line.

This feature opens up all sorts of possibilities. For instance, it is now possible to flash just part of one character on the text screen.

HIRES AND INTERRUPTS

On version 1.0 ROMs the TEXT and HIRES commands use the third software timer to wait for two interrupts after storing the HIRES or TEXT attribute at #BFDF. This means that interrupts must be running normally at the time you use the commands. On version 1.1 ROMs this applies only to the TEXT command.

MACHINE CODE SUBROUTINES

In order to perform the BASIC HIRES instructions (such as CIRCLE, DRAW, and CURSET), a machine code program must first set up a number of parameters in the area #2E1 to #2EF. These are always in the same format as the actual BASIC command and must be stored as 2-byte integer values at
#
2E1 upward. For instance, ‘CIRCLE 20,1’ would require: #2E1: #14; #2E2: #0; #2E3: #1; #2E4: #0.

Consult the BASIC handbook for the format of each command.

The range of the parameters you pass will be checked, as it would be in BASIC, and location #2EO is set to 1 if there are any errors.

As usual, the first address is for version 1.0 ROMs and the address in brackets is for version 1.1 ROMs:

HIRES #E9BB

TEXT #E9A9

PAPER #F17F

INK #F18B

CURSET #F02D

DRAW #F079

POINT #F141

CURMOV #
F064

CHAR #F0
A5

FILL #F1E5

CIRCLE
#F2E5
�

(#EC33) – no parameters.

(#EC21) – no parameters.

(#
F204) – #2E1,2: paper colour.

(#F210) – #2E1,2: ink colour.

(#F
0
C8) –
#
2E1,2: X; #2E3,4: Y; #2E5,6: FB

code

(#F110) – parameters as for CURSET.

(#F1C8) – #2E1,2: X; #2E3,4: Y. Returns #FF

or #00 in #2E1, depending on

whether the point is set or
cleared.

(#F0
FD) – see CURSET.

(#F12D) – #2E1,2:ASCII code; #2E3,4: charac
ter set; #2E5,6:FB code.

(#F268) – #2E1,2: No. of rows; #2E3,4:No. of

cells;
#
2E5,6: value.

(#F37F) – #2E1,2:radius; #2E3,4: FB code.��
PATTERN – No call is needed, simply POKE #213 with the required pattern.

You will find that these subroutines are only slightly quicker than the equivalent BASIC command. Chapter 7 explains some faster methods of using high resolution.

6.4	Sound and music

ROM ROUTINES

All of the BASIC commands for sound and music can be easily accessed from machine code. The same method of supplying parameters is used as for the graphics commands.

PLAY

MUSIC

SOUND�

#F421 (#FBDO)

#F424 (#FC18)

#F41E (
#
FB40)�

– #2E1,2: tone enable;

#2E3,4: noise enable;

#
2E5,6: envelope;

#2E7,8: envelope period.

#2E1,2: channel;

#2E3,4:

octave;

#2E5,6: note;

#2E7,8: volume.

 #2E1,2: channel;

#2E3,4:

period;
#2E5,6: volume.
��

ZAP

EXPLODE

PING

SHOOT

KE
YCLICK-1

KE
YCLICK-2�

#F41B (#FAE1).

#F418 (#FACB).

#F412 (
#FA9F).

#F415 (#FA9B)

#FAFA (#FB14)

#FB10 (#FB2A)
���

In machine code a program can also directly access the sound chip. Chapter 1 describes this device and gives all the details about the registers.

In order to write to the 8912 sound chip, you must call a subroutine at #F535 (#F590) for every register that you need to change. This is done by putting the register number (0 to #E) in the accumulator and loading the data in the X register.

Please note that the envelope shape that you put in register #D is different from that used in the PLAY command. Refer to Chapter 1 for details of which values relate to which envelope.

Since any one musical effect may require the setting of up to 14 registers, the ROM conveniently provides a subroutine to do just that. The routine starts at #FA6C (#FA86) and assumes that the X and Y registers point to the start of a 14-byte table (X is low, Y is high, and the table refers to registers 0 to #D).

Often it is useful to call this loader in order to get the type of sound required, and then change individual registers to alter pitch, volume, etc.

The subroutine that loads up a register with a value suffers from being rather inefficient. You will find a better version in the speech synthesis program of Chapter 9.

