8

 USEFUL UTILITIES

8.1 Introduction

This chapter presents six utilities to help you write programs in BASIC. You may have seen other versions of some of the routines (such as Delete and Renumber), but the routines here are generally shorter and faster.

The programs can be entered by using a machine code monitor (such as Tansoft’s ORICMON program) or by using a simple BASIC loader, as described in Chapter 3. Once the machine code is in memory, you should save it on tape so that it can be loaded independently of any other program.

Chapter 3 contains a relocater routine should you need to move the programs to a different address.

Some of the programs are considerably dependent on the ROM, and often you will find two listings printed – one per version of ROM. Where there are only a small number of differences, a listing is given for version 1.0, with the changes that are required for version 1.1.

8.2	Renumber routine

This is quite a lengthy program, occupying about 600 bytes. Its purpose is to resequence a BASIC program so that the line numbers increase in even steps. This is very useful when you need to insert new lines into a program.

The utility is located in the alternate character set area, between #B800 and #BA5C. Remember that pressing the Reset button will wipe out the program!

To renumber your program you must first DOKE 0 with the starting line number and then DOKE 2 with the increment. Finally, you should CALL #BA1E in order to start the process. For large programs, prepare to wait a couple of minutes. For example, DOKE 0,10:DOKE 2,10:CALL#BA1E would renumber the program starting at 10, in steps of 10.

ALL GOTO, GOSUB, THEN, and ELSE statements are converted to fit in with the new steps.

Version 1.0 owners should note that the Renumber program can be loaded after the BASIC program to be renumbered, since the #9C end-of-BASIC pointer is corrected.

HOW IT WORKS

Renumber is the most complicated program in this book. The theory is as follows:

1.	Use the two link bytes to store the new line numbers. The old numbers must be kept for cross-reference purposes.

2.	Go through the program looking for ‘GOTO’, ‘GOSUB’, ‘THEN’, or ‘ELSE’.

3.	When one of these tokens is found, look up the line number that follows and replace it with the new line number stored in the link field.

4.	At the end of the program, recalculate the links.

CHANGES FOR VERSION 1.1

The ROM is called in eight places; however, for version 1.1 these addresses are different:

#B94E: JSR DFE7 #B951: JSR D92C #B968: JSR D499 #BA1A: JSR C55F #BA1E: JSR E76A #BA30: JSR E93D #BA44: JSR DB22 #BA47: JSR E0D5�

(input a number into ACC1 from ASCII)

(turn ACC1 into an integer)

(turn integer into floating point)

(create program links)

(disable interrupts)

(enable interrupts)

(add memory to ACC1)

(convert ACC1 into ASCII)�����PROGRAM LISTING

The program (8.1) needs this short table: #BA58: #91, #00, #00, #00, #00.

This is the floating-point representation of 65536 which is used to handle line numbers beyond 32767.

�

�

�

�

�

�

�

�

8.3	Delete utility

It is often useful to be able to extract part of a program, but normally this would involve much typing in order to remove the unwanted lines. Here is a short routine that will delete any given section of a program.

To run the program, DOKE 0 with the lowest line number and DOKE 2 with the highest line number. When you are ready to delete part of the program, type CALL#420. For example, DOKE0,100: DOKE2,200:CALL#420 would delete lines 100 to 200 (inclusive).

Owners of version 1.0 ROMs should load the DELETE program before loading the BASIC program that is to be modified, otherwise the #9C end-of-BASIC pointer will be incorrect.

Version 1.1 ROM owners must make these three changes to the listed routine:

#429: JSR C6B9 (find address of a given line number)

#441: JSR C6B9

#462: JSR C55F (create program links)

HOW THE DELETE UTILITY WORKS

This program first finds the address of the earliest line to delete, storing it at 0,1.

Then it finds the address of the line following the section that is to be deleted. It is then a simple matter to move down the program, from the second address to the first. Finally, the program is re-linked, and the #9C end-of-BASIC pointer corrected.

PROGRAM LISTING

This is given in Program 8.2.

�

�

8.4	Merge program facility

This is an invaluable routine, often used in connection with the previous two subroutines when copying parts of BASIC programs around.

This program is much more sophisticated than the ‘join’ facility of version 1.1 ROMs, as it can interleave two programs correctly and also replace duplicated lines.

To use Merge:

1.
Load up the Merge machine code routine.

2.
Load up the first BASIC program.

3.

Type in CALL #B
8AE.

4. P
lay back the tape containing the new section to be introduced.

Any lines with the same line number will act as replacements.

If the tape speed of the first BASIC program is different from the second, you will need to alter the tape-speed flag. This is either 0 fast) or 1 (slow) and is stored at #67 (version 1.0) or #24D (version
1
.
1).

The Merge routine will take a maximum of 3 minutes to complete, depending on the size of the first program.

There must be room in memory to store both the original program
and
the program that is merged.

HOW MERGE WORKS

It is not possible to insert lines into a program directly as they arrive from tape – there is not enough time between bytes. The method used here is to move the existing program up to the end of memory and then load in the new lines as a normal program. Then the Merge routine can input each line of the program stored at the end of memory into the correct place. When this process is finished, the #9C end-of-BASIC pointer is recalculated and the program is re
-
linked.

PROGRAM LISTINGS

Because the tape handling routines are greatly different between the two ROM versions, there are two program listings (Programs 8.3 and 8.4).

�

�

�

�

B923: EA

B924: EA

�

�

�

�

�

�

8.5	AUTO DATA feature

This utility is designed to save time when typing long programs. As it stands, the program types the next line number (in sequence) followed by the command ‘DATA’, every time that you press RETURN.

This can be easily changed to any other automatic command – such as PRINT – or just the line number alone.

On version 1.0, remember to load the machine code program before you load the BASIC program, or the end-of-BASIC pointer will be incorre
c
tly set up.

To start the AUTO feature, CALL #4A1. To stop the AUTO temporarily (to do an immediate command, such as CSAVE), you can use CONTROL-X. To turn off AUTO, you need to do two DOKE commands in immediate mode: For version 1.0 ROMs, do: DOKE #229,#EC03:POKE #230,64. For version 1.1 ROMs, do: DOKE
#
245,#EE22:POKE #24A,64.

Before you call the routine, you must DOKE 0 with the starting line number and DOKE 2 with the line increment.

This routine can only handle line numbers up to 32767. You will also find that the first digit of the line number will be lost whenever the ‘READY’ message appears.

HOW AUTO DATA WORKS

The routine is called every time that an interrupt occurs (normally 100 times per second) before the keyboard is scanned. When the last key pressed was RETURN, the AUTO routine feeds in the next line number and the word ‘DATA’ (not as a token!). To the system, it is as if these keys have been pressed. You will notice a small delay is made between the end of one line and the start of the next. This is done because problems arose when characters were sent at full speed and the line was corrupted as it was stored in memory.

It is at #453 that the word ‘DATA’ is moved into a temporary buffer, but this can be altered or removed if required.

If you change location #454 to #0, the subroutine will only generate a line number.

PROGRAM LISTINGS

There are two program listings, one for each ROM version (Programs 8.5 and 8.6).

�

�

�

�

�

�

8.6	Trace utility

This program helps a BASIC program to be debugged by constantly displaying the current line number as the program runs.

This is often useful in determining what exactly a program is doing. If a program should crash, or go into a tight loop, then this will be immediately noticeable.

USING THE PROGRAM

The Trace program should be loaded from tape first, followed by the program to be traced. On version 1.0 this order is important since the end-of-BASIC pointer (#9C) must reflect the end of the BASIC program.

To start the trace, type CALL #495 – a very large number should appear in the top left corner. When you run your BASIC program, this number will change to show the line number currently being executed.

HOW IT WORKS

The program is called by the slow interrupt vector, but only updates the line number when it changes. Locations #A
8
, #A9 contain the

current line number in integer form, so this must be converted to decimal and displayed. This could be done with ROM subroutines, but you must remember that we are in the middle of an interrupt call; it is important not to disturb any page 0 and page 2 locations that might be in use.

In the Trace program, we use a standard binary-to-decimal technique which involves the subtraction of the powers of 10.

The Trace program demonstrates how it is possible for the Oric to do two tasks at the same time. The demonstration program for the Oric Atmos uses interrupts in order to play music while the main BASIC program runs. Chapter 9 shows how it is possible to run two BASIC programs concurrently – again using interrupts.

PROGRAM LISTING

First of all, there is a table of 11 bytes at #4A1:

#4A1: #10, #27, #E8, #03, #64, #00,
#
OA, #00, #4C, #22, #04

This table contains the binary value for each power of 10. At the end of the table is the jump that overwrites the page 2 slow interrupt vector. Owners of version 1.1 ROMs should DOKE #49B with #24A because of the different interrupt patch address.

The program listing is given in Program 8.7.

�

�

8.7 On-error GOTO feature

When a BASIC program stops, it always returns to command mode. This can be undesirable, especially on the production version of a complicated program, where obscure bugs may still be lurking. Also, it is often a nice touch to detect control-C, and not just crash the machine, but instead jump back into the program.

This short utility traps any attempt to return to command mode and forces the computer to re-enter the program at line 500, without loss of variables.

Be warned that using this routine can be a little annoying to yourself, especially when you find yourself stuck in your own program!

HOW IT WORKS

When BASIC finishes a program, or a command, it prints ‘Ready’. This is not done directly, but instead through a jump command at #1A to
#
lC. This means that the jump can be modified for our own purposes. Often the address at #1B is changed so that the machine simply jumps to the start-up routine – wiping everything out. If you want to do this incidentally, type DOKE #1B,DEEK(#FFFC).

Here we change the vector to jump to #B1DO (the program can be easily relocated to another address if you wish), so you must DOKE #1B, #B1DO.

The routine does exactly what would have normally happened; then we force ‘GOTO500’ into BASIC’s input buffer, as though it had been typed, which persuades the machine to re-enter the program. The GOTO500 can easily he changed to any other command. Note that when the program is re-entered, all GOSUBs have effectively been POPped, so RETURN will produce an error message – and unless you are very careful, you will end up with unceasing display of that error message, since there is now a fault in the error handler!

HOW TO USE THE PROGRAM

Version 1.1 owners will need to change #B1F
0

to JMP #C4BD. The on-error feature is switched on by DOKE #1B, #B1D
0
 and off by either DOKE #1B,#CBED
 (version 1.0) or DOKE #1B,#CCB0
 (version 1.1).

You can quite easily change the line number that is jumped to by altering #B1D8 to #B1E3.

Note that should a BASIC error occur, you will still get the error message printed before the program continues. This is one occasion where control-S can be used in order to inhibit the printing of error messages. The screen will still scroll if the cursor is within the bottom four lines, regardless of control-S.

PROGRAM LISTING

�

